Numerical Investigation

of Precessional Fishbone Nonlinear Dynamic :

Impact of the nonlinear MHD effects

Alodie Grondin-Exbrayat

Co authors : Matteo Faganello, Nicolas Dubuit and Alexandre Poyé

2nd European Conference on Magnetic Reconnection in Plasmas

> June 18th, 2025 Turin, Italy

I. Precessional Fishbone Instability

I. Precessional Fishbone Instability

II. Theoretical Model and Linear Benchmark

I. Precessional Fishbone Instability

II. Theoretical Model and Linear Benchmark

III. Fishbone Saturation

I. Precessional Fishbone Instability

II. Theoretical Model and Linear Benchmark

III. Fishbone Saturation

IV. MHD Nonlinear Effects Impact on Fishbone Saturation

Precessional Fishbone

• Energetic Particles (EP) excite a MHD wave.

[McGuire, et al., 1983 Coppi, et al., 1986 White, et al. 1989]

• Features :

EP generated by :

- Most unstable mode : m, n = 1, 1
- Frequency of the toroidal precession velocity of the EP, ω_D
 - Heating systems : NBI, ICRH,....
 - Alpha particles

Energetic Particles : Deeply Trapped Particles

am

• Particles trapped in the low field side

• Banana orbit : $v_{\perp} \gg v_{\parallel}$

• $\omega_{cyclotron} \gg \omega_{bounce} \gg \omega_D$

EP Kinetic Description

• Kinetic Vlasov equation :

$$\frac{\partial f}{\partial t} - \{ H, f \}_{\varphi, p_{\varphi}} = 0$$

$$\mathbf{H} = \mu \mathbf{B}_{\varphi} + e \Phi$$

2nd ECMRP

18/06/25

2

- Φ is the bulk plasma electric potential
- Toroidal precessional frequency :

$$\omega_D(r) = \frac{\mu}{e R_0^2} \frac{B_{\varphi}}{B_{\text{poloidal}}} \propto \frac{1}{r}$$

am

EP Kinetic Description

• Gyro average : $6D \rightarrow 4D$

$$\triangleright \ \mu = rac{m \mathbf{v}_{\perp}^2}{2 \ \mathbf{B}_{arphi}} = \mathrm{cst}$$
 , adiabatic invariant since $\ \omega \ll \omega_{cyclotron}$

- Bounce average : $4D \rightarrow 2D$
 - $\triangleright \quad \delta_b = \mathrm{cst} \ll 1$, adiabatic invariant since $\omega \ll \omega_{bounce}$

2nd ECMRP

18/06/25

• $p_{\varphi} = mR_0 v_{\parallel} - eR_0 \Psi(r) \simeq -eR_0 \Psi(r)$ with $\Psi = A_{\parallel}$, parallel component of the vector potential

Gradient in r implies a gradient in p_{arphi}

am

 $\times 10^{-4}$

Resonant Interaction Mechanism

• EP density distribution function :

$$F_{eq_{\mu,\delta_b}} = A F_r(r)$$

PIN

Inverse Landau Damping

At the frequency $\omega_D(r_q)$

am

[Landau, et al., 1946 Bernstein, et al., 1957]

18/06/25

2nd ECMRP

Bulk Plasma Reduced MHD Description

• Advection of magnetic flux equation and vorticity equation :

$$\begin{cases} \frac{\partial}{\partial t}\Psi + \{\Phi,\Psi\} = \eta\Delta\Psi\\ \frac{\partial}{\partial t}\Delta\Phi + \{\Phi,\Delta\Phi\} = -\{\Psi,\Delta\Psi\} \end{cases}$$

Destabilization of resistive internal kink At the q = 1 surface $\omega = 0$,

 Φ : Velocity stream function

$$\mathbf{u}_{\perp} = \frac{\mathbf{e}_{\varphi} \times \nabla \Phi}{\mathbf{B}}$$

[Coppi, et al., 1976, White review, 1980]

2nd ECMRP

18/06/25

 Ψ : Parallel component of the potential vector

$$\mathbf{B}_{\perp} = \mathbf{e}_{\varphi} \times \nabla \Psi$$

Bulk Plasma with EP Contribution

• Advection of magnetic flux equation and vorticity equation :

$$\begin{cases} \frac{\partial}{\partial t} \Psi + \{\Phi, \Psi\} = \eta \Delta \Psi \\ \frac{\partial}{\partial t} \Delta \Phi + \{\Phi, \Delta \Phi\} = -\{\Psi, \Delta \Psi\} - (e_{\varphi} \times \kappa) \cdot \nabla P_{EP_{\perp}} \end{cases}$$

 Φ : Velocity stream function

$$\mathbf{u}_{\perp} = \frac{\mathbf{e}_{\varphi} \times \nabla \Phi}{\mathbf{B}}$$

 $P_{EP_{\perp}}$: EP Perpendicular pressure

$$P_{\rm EP_{\perp}} = \int 2\mu B_{\varphi}^2 f_{\mu,\delta_b}(\varphi, p_{\varphi}) d\mu$$

2nd ECMRP

18/06/25

am

 $\Psi\,$: Parallel component of the potential vector

$$\mathbf{B}_{\perp} = \mathbf{e}_{\varphi} \times \nabla \Psi$$

II. Theoretical Model

Bulk Plasma with EP Contribution

18/06/25

PIN

aml

Simulation Setup

• Code : AMON [Semi-spectral code] [Poye, et al. 2014]

- Geometry: Thermal Plasma : cylindrical 2D monohelicity (m = n)
 - Energetic Particles : toroidal φ , p_{φ}

• Coupling MHD – kinetic through m, n = 1, 1

17

am

Z

 φ

2nd ECMRP

 R_0

x

18/06/25

Linear Simulations

18/06/25

Linear Simulations

Linear Simulations

Linear frequency set by the EP dynamic : $\omega_{1,1} = \omega_D(r_g), \text{ EP precessional}$ frequency where the drive is the strongest strongest $[Chen, \text{ et al., 1984} \\ \text{ Zonca, et al., 2000} \\ \text{ Idouakass, et al. 2016]}$

 $F_{eq}[n_{eq}]$

2nd ECMRP

18/06/25

Fishbone Eigenmode

• Comparison with [Idouakass, et al. 2016] done in Slab geometry

Fishbone Eigenmode

• Comparison with [Idouakass, et al. 2016] done in Slab geometry

- Change of the kink mode shape without EP
 - ▷ Double peak around q = 1 surface at :

$$\omega_{1,1} = \pm k_{\parallel} V_A(r)$$

am

Resistive Internal Kink Eigenfunctions without EP

PIIP

2nd ECMRP

18/06/25

Nonlinear Fishbone (close to the threshold, MHD nonlinear effects : OFF)

18/06/25

Bulk plasma kinetic energy

Fishbone

Ш.

2nd ECMRP 18/06/25

III. Fishbone Saturation

- EP distribution function in the resonant EP :
 - Frame moving at $\omega_D(r_g)$ in the direction φ
 - Isoline of $H_{eq} + H \omega_D(r_g)p_{\varphi}$

III. Fishbone Saturation

- EP distribution function in the resonant EP :
 - Frame moving at $\omega_D(r_g)$ in the direction φ
 - Isoline of $H_{eq} + H \omega_D(r_g)p_{\varphi}$

III. Fishbone Saturation

- EP distribution function in the resonant EP :
 - Frame moving at $\omega_D(r_g)$ in the direction φ
 - Isoline of $H_{eq} + H \omega_D(r_g)p_{\varphi}$

III. Fishbone Saturation

- EP distribution function in the resonant EP :
 - Frame moving at $\omega_D(r_g)$ in the direction φ
 - Isoline of $H_{eq} + H \omega_D(r_g)p_{\varphi}$

III. Fishbone Saturation

- EP distribution function in the resonant EP :
 - Frame moving at $\omega_D(r_g)$ in the direction φ
 - Isoline of $H_{eq} + H \omega_D(r_g)p_{\varphi}$

Resonance Condition Lost

(close to the threshold, MHD nonlinear effects : OFF)

- Phase evolution of $\phi_{1,1}$:
 - Frame of the resonant interaction

• Evolution of the frequency of $\phi_{1,1}$:

PIN

2nd ECMRP

18/06/25

am

III. Fishbone Saturation

Resonance Condition Lost

(close to the threshold, MHD nonlinear effects : OFF)

- Lost of resonance between EP and $\phi_{1,1}$:
 - $\triangleright f_{1,1}$ changing their frequency for $\omega_D(p_{\varphi})$
 - $\triangleright f_{1,1}$ frequency decreases as $\omega_D \propto p_{\varphi}$

• Evolution of the frequency of $\phi_{1,1}$:

III. Fishbone Saturation

Resonance Condition Lost

(close to the threshold, MHD nonlinear effects : OFF)

- Lost of resonance between EP and $\phi_{1,1}$:
 - $\triangleright f_{1,1}$ changing their frequency for $\omega_D(p_{\varphi})$
 - $\triangleright f_{1,1}$ frequency decreases as $\omega_D \propto p_{\varphi}$
- New synchronization between EP and $\phi_{1,1}$:
 - New trapping of the resonant EP

 $t [\tau_A]$

• Evolution of the frequency of $\phi_{1,1}$:

III. Fishbone Saturation

(close to the threshold, MHD nonlinear effects : OFF)

• EP distribution function in the resonant EP :

• Isoline of $H_{eq} + H - \omega_{\phi_{1,1}}(t)p_{\varphi}$

III. Fishbone Saturation

(close to the threshold, MHD nonlinear effects : OFF)

• EP distribution function in the resonant EP :

• Isoline of $H_{eq} + H - \omega_{\phi_{1,1}}(t)p_{\varphi}$

III. Fishbone Saturation

(close to the threshold, MHD nonlinear effects : OFF)

• EP distribution function in the resonant EP :

• Isoline of $H_{eq} + H - \omega_{\phi_{1,1}}(t)p_{\varphi}$

Nonlinear Fishbone (close to the threshold, MHD nonlinear effects : ON)

Bulk plasma kinetic energy

Nonlinear Fishbone (close to the threshold, MHD nonlinear effects : ON)

am

• Generation of zonal flow

$$u_{\theta_{0,0}}(r) = \frac{\partial \phi_{0,0}}{\partial r} \implies \omega_{ZF|_{r_g}}$$

- Coupling of the mode $m = \pm 1$
- Developed at linear resonance position r_a
- Amplitude of $\phi_{0,0}$ dominates the saturation

2nd ECMRP

IV. MHD Nonlinear Effects

Energy Exchange between mode and resonant EP

(close to the threshold, MHD nonlinear effects : ON)

Resonance Condition Maintained

(close to the threshold, MHD nonlinear effects : ON)

- Phase evolution of $\phi_{1,1}$:
 - Frame of the resonant interaction

• Evolution of the frequency of $\phi_{1,1}$:

PIN

2nd ECMRP

18/06/25

am

IV. MHD Nonlinear Effects

Resonance Condition Maintained

(close to the threshold, MHD nonlinear effects : ON)

41

- Maitainance of resonance between EP and $\phi_{1,1}$:
 - ▷ No down chirping as $\omega_{1,1}(t)$ seems to follow : $\omega_{\text{linear}} + \omega_{ZF}(t)$
 - No desynchronization

• Evolution of the frequency of $\phi_{1,1}$:

PIN

2nd ECMRP

18/06/25

am

IV. MHD Nonlinear Effects

Energy Exchange maximization

(close to the threshold, MHD nonlinear effects : ON)

- Phase evolution of $\phi_{1,1}$:
 - Frame of the resonant interaction

IV. MHD Nonlinear Effects

Energy Exchange between mode and resonant EP

(close to the threshold, MHD nonlinear effects : ON)

Kinetic : linear, MHD : nonlinear [Odblom, et al., 2002]

Kinetic : nonlinear, MHD : linear

Kinetic : nonlinear, MHD : nonlinear

Kinetic : nonlinear, MHD : nonlinear without ZF

• Evolution of $\omega_{\phi_{1,1}}$ for different types of simulations :

2nd ECMRP

Kinetic : linear, MHD : nonlinear [Odblom, et al., 2002]

- No saturation
- Frequency explosion

Kinetic : nonlinear, MHD : linear

Kinetic : nonlinear, MHD : nonlinear

Kinetic : nonlinear, MHD : nonlinear without ZF

• Evolution of $\omega_{\phi_{1,1}}$ for different types of simulations :

2nd ECMRP

Kinetic : linear, MHD : nonlinear [Odblom, et al., 2002]

- No saturation
- Frequency explosion

Kinetic : nonlinear, MHD : linear

- Saturation
- Frequency down-chirping

Kinetic : nonlinear, MHD : nonlinear

Kinetic : nonlinear, MHD : nonlinear without ZF

• Evolution of $\omega_{\phi_{1,1}}$ for different types of simulations :

2nd ECMRP

Kinetic : linear, MHD : nonlinear [Odblom, et al., 2002]

- No saturation
- Frequency explosion

Kinetic : nonlinear, MHD : linear

- Saturation
- Frequency down-chirping

Kinetic : nonlinear, MHD : nonlinear

- Saturation
- Frequency up-chirping

Kinetic : nonlinear, MHD : nonlinear without ZF

• Evolution of $\omega_{\phi_{1,1}}$ for different types of simulations :

2nd ECMRP

Kinetic : linear, MHD : nonlinear [Oc

- No saturation
- Frequency explosion

Kinetic : nonlinear, MHD : linear

- Saturation
- Frequency down-chirping

Kinetic : nonlinear, MHD : nonlinear-

- Saturation
- Frequency up-chirping

Kinetic : nonlinear, MHD : nonlinear without ZF

• Evolution of $\omega_{\phi_{1,1}}$ for different types of simulations :

2nd ECMRP

Kinetic : linear, MHD : nonlinear [Oc

- No saturation
- Frequency explosion

Kinetic : nonlinear, MHD : linear

- Saturation
- Frequency down-chirping

Kinetic : nonlinear, MHD : nonlinear-

- Saturation
- Frequency up-chirping

Kinetic : nonlinear, MHD : nonlinear without ZF

- ▷ Saturation
- Frequency down-chirping

• Evolution of $\omega_{\phi_{1,1}}$ for different types of simulations :

2nd ECMRP

Kinetic : linear, MHD : nonlinear [Oc

- No saturation
- Frequency explosion

Kinetic · nonlinear MHD · linear

MHD nonlinear effect are dominated

by the zonal flow growth

Kinetic : nonlinear, MHD : nonlinear

- Saturation
- Frequency up-chirping

Kinetic : nonlinear, MHD : nonlinear without ZF

- Saturation
- Frequency down-chirping

• Evolution of $\omega_{\phi_{1,1}}$ for different types of simulations :

2nd ECMRP

Conclusion

 \Rightarrow Saturation occurs through kinetic nonlinear trapping of EP

 \Rightarrow Nonlinear MHD effects are dominated by the growth of the $\phi_{0,0}$ mode

 \Rightarrow Nonlinear MHD effects increase the saturation level

⇒ Advection of the fishbone mode by ZF preserves the resonant interaction by preventing a frequency down-chirping

Thank you for your attention

Alodie Grondin-Exbrayat

Co authors : Matteo Faganello, Nicolas Dubuit and Alexandre Poyé

2nd European Conference on Magnetic Reconnection in Plasmas

> June 18th, 2025 Turin, Italy

Tokamak Plasma

magnetic field .

aml

Ρ

2nd ECMRP

18/06/25

Typical density in the core : 10^{20} ions/m³

Tokamak Plasma

Overview

Precessional fishbone	Diamagnetic fishbone
-Energetic Particle Mode	-Alfven Eigen mode
-Strong drive	-Low drive

Burst of MHD activity detected by Minrov coils, McGuire, et al., 1983

[McGuire, et al., 1983 Coppi, et al., 1986 White, et al. 1989]

| 18/06/25

aml

Particles synchronize their velocity with the v_{phase} :

Distribution of velocity

18/06/25

12

I. Fishbone instability

Internal Resistive Kink Mode

without Energetic Particles

- * Constant radial displacement ξ_r of the magnetic surfaces.
- ***** Resonance of the mode m = n = 1 at :

•
$$q_{\text{helicity}}\left(=\frac{m}{n}\right)=1$$

***** Zero frequency mode and $\gamma \sim \eta^{0.33}$.

[Coppi, et al., 1976, White review, 1980]

Nested magnetic surfaces

Internal Resistive Kink Mode

without Energetic Particles

Internal Resistive Kink Mode

without Energetic Particles

Using the MHD equations and keeping the term of order one :

$$\frac{\mathrm{d}}{\mathrm{d}r} \left\{ r^3 \left[\rho \gamma^2 + \left(\frac{m \psi_0'}{r} \right)^2 \right] \frac{\mathrm{d}\widetilde{\xi_r}}{\mathrm{d}r} \right\} = \left(\left[\frac{(m \psi_0')}{r} + \rho \gamma^2 r \right] (m^2 - 1) + \left(\frac{kr}{m} \right)^2 \frac{(\psi_0')^2}{r} \right) \widetilde{\xi_r}$$

The growth rate of the mode is given by

$$\gamma \sim \int_0^{r_{\text{RES}}} g \, \mathrm{d}r \longrightarrow \gamma \sim \eta^{0.33}$$

For $r < r_{\text{RES}}$

$$\widetilde{\xi_r}(r) \sim u_r(r) = \operatorname{cst} \longrightarrow \frac{\phi}{r} = \operatorname{cst}$$

am

2nd ECMRP

Flux Computation Surfaces

PIM

18/06/25

amul Aix Marseille Universit

Helicity

PIN

2nd ECMRP

Simulation Setup

 \Box Benchmark of the resistive internal kink without EP: $\gamma \sim \eta^{0.33}$

2D/cylindrical $\sim \eta^{0.33}$ 10-2 لا [1/۲_A] 1/۲_A] 10⁻⁹ 10-8 10-7 10⁻⁶ 10⁻⁵ 10^{-4} η [1/S]

[Coppi et al. 1976]

am

Ρ

EP precessional frequency profile

Mode and resonant EP frequency evolution : Down chirping

 $\frac{\gamma}{-} \simeq 10^{-1}$ ω

DJ.

18/06/25

am

Mode and resonant EP frequency evolution : Desynchronization

 $\frac{\gamma}{-1} \simeq 10^{-1}$

 $\perp 0$

18/06/25

2π

 $3\pi/2$

 $\pi \varphi$

2nd ECMRP

ω

-0.15

PIP

am

 $\overline{0}$

π/2

Measured on $f_{1,1}$

EP transport for
$$\frac{\gamma}{\omega} \simeq 10^{-1}$$

Kinetic : nonlinear, MHD : linear

71

Kinetic : nonlinear, MHD : nonlinear

aml

Kinetic : nonlinear, MHD : linear

2nd ECMRP

t [*τ*_A]

Zonal flow impact for MHD nonlinear effects only for $\frac{\gamma}{\omega} \simeq 10^{-1}$

am

Plir

[Odblom, et al., 2002]

2nd ECMRP
q profile nonlinear evolution

| 18/06/25

Possible chaos for $\frac{\gamma}{\omega} \simeq 10^{-1}$

18/06/25

 $3\pi/2$

CNIS

amu

Full modes coupling 1/2

Full modes coupling 1/2

Full modes coupling 2/2

Measured on $\phi_{1,1}$

Measured on $f_{1,1}$

Energy exchange 1/2

am

Ρ

2nd ECMRP

18/06/25

Energy exchange 2/2

Kinetic : nonlinear, MHD : nonlinear

Kinetic : nonlinear, MHD : nonlinear Full modes coupling

am

Ρ

2nd ECMRP

18/06/25

