

Electron Heating by Parallel Electric Fields in Magnetotail Reconnection L. Richard, Yu. V. Khotyaintsev, D. B. Graham, C. Norgren, K. Steinvall, J. Egedal, A. Vaivads, R. Nakamura

louis.richard@irf.se

2nd European Conference on Magnetic Reconnection in Plasmas

 As magnetic flux tubes expand, electron density should drops, while density of demagnetized ions stays constant resulting in positive charge density.

- As magnetic flux tubes expand, electron density should drops, while density of demagnetized ions stays constant resulting in positive charge density.
- Parallel electric fields E_{\parallel} form in the reconnection region to maintain quasi-neutrality.

- should drops, while density of demagnetized ions stays constant resulting in positive charge density.
- maintain quasi-neutrality.

Electron Heating by Parallel Electric Fields v_{\perp} 10 z/d_e 0 -10-30-2020-1010() x/d_e

 Parallel electric fields accelerate electrons toward the X-line, forming beam-type electron VDFs.

- Parallel electric fields accelerate electrons toward the X-line, forming beam-type electron VDFs.
- Trapped electrons form a thermalized hot population.

- Parallel electric fields accelerate electrons toward the X-line, forming beam-type electron VDFs.
- Trapped electrons form a thermalized hot population.
- Unstable beam + thermalized hot electron excites electrostatic waves and forming flat-top VDFs [Fujimoto, 2014, GRL].

- Parallel electric fields accelerate electrons toward the X-line, forming beam-type electron VDFs.
- Trapped electrons form a thermalized hot population.
- Unstable beam + thermalized hot electron excites electrostatic waves and forming flat-top VDFs [Fujimoto, 2014, GRL].
- **Curvature scattering** of electrons isotropizes the flat-top VDFs.

- Parallel electric fields accelerate electrons toward the X-line, forming beam-type electron VDFs.
- Trapped electrons form a thermalized hot population.
- Unstable beam + thermalized hot electron excites electrostatic waves and forming flat-top VDFs [Fujimoto, 2014, GRL].
- **Curvature scattering** of electrons isotropizes the flat-top VDFs.

What is the nature and the role of parallel electric fields in magnetic reconnection?

plasma frequency/cyclotron frequency

The Magnetospheric Multiscale (MMS) mission[†]

*https://www.nasa.gov/fy-2026-budget-request/

The Magnetospheric Multiscale (MMS) mission[†]

- NASA mission launched in 2015, designed to study magnetic reconnection in Earth's magnetosphere.
- Four spacecraft flying in a tetrahedral formation with ~10 km separation, enabling 3D measurements.
- Fields instruments provide high-cadence measurements of electromagnetic fields:
 - Electric and magnetic field data at up to 64 kHz (electric) and 8 kHz (magnetic).
- Particle instruments deliver high-resolution plasma measurements:
 - Thermal protons sampled every 150 ms and electrons every 30 ms.
 - Spin-resolution measurements (20 s cadence) of massresolved ions.
 - Suprathermal particles: ions at 10 s / 30 s and electrons at 30 s cadence.

†https://www.nasa.gov/fy-2026-budget-request/

Electron VDFs in the Outflow Example

- Beam + thermalized core at the current)

- Beam + thermalized core at the current)

• Model electron VDF (r,q) [Qureshi+2004, PoP] for $v_{\perp} \simeq 0$

$$f_{(r,q)} = f_0 \left[1 + \left(\frac{v_{\parallel}^2}{\xi(r,q)v_{te,\parallel}^2} \right)^{r+1} \right]^{-q}$$

• Model electron VDF (r,q) [Qureshi+2004, PoP] for $v_{\perp} \simeq 0$

$$f_{(r,q)} = f_0 \left[1 + \left(\frac{v_{\parallel}^2}{\xi(r,q)v_{te,\parallel}^2} \right)^{r+1} \right]^{-q}$$

• Flatness factor: $\Xi = f(v_{th})/f_0$:

$$\tilde{\Xi} \equiv \frac{\Xi_{(r,q)}}{\Xi_{bM}} = e \left(1 + \frac{1}{\xi^{r+1}}\right)^{-q}$$

 Model electron VDF (r,q) [Qureshi+2004, PoP] for $v_{\perp} \simeq 0$

$$f_{(r,q)} = f_0 \left[1 + \left(\frac{v_{\parallel}^2}{\xi(r,q)v_{te,\parallel}^2} \right)^{r+1} \right]^{-q}$$

• Flatness factor: $\Xi = f(v_{th})/f_0$:

$$\tilde{\Xi} \equiv \frac{\Xi_{(r,q)}}{\Xi_{bM}} = e \left(1 + \frac{1}{\xi^{r+1}}\right)^{-q}$$

• Knee velocity v_{Φ} corresponding to the acceleration potential $f(v_{\Phi})/f_0 = \varepsilon$

$$v_{\Phi} = \left(\varepsilon^{-1/q} - 1\right)^{1/2(r+1)} \xi^{1/2} v_{te,\parallel}$$

 Plasma sheet reconnection followed by lobe reconnection

[Vaivads+2011, AnnGeo]

PSR

 Plasma sheet reconnection followed by lobe reconnection

[Vaivads+2011, AnnGeo]

PSR

TLR

 Plasma sheet reconnection followed by lobe reconnection

[Vaivads+2011, AnnGeo]

PSR

TLR

• The increase in acceleration potential is proportional to the increase in inflow Alfvén speed

$$e\Phi_{\parallel}^{TLR}/e\Phi_{\parallel}^{PSR} \sim V_{Ae\infty}^{TLR}/V_{Ae\infty}^{PSR}$$

The acceleration potential increases with the inflow Alfvén speed

Results The origin of E_{\parallel}

Results The origin of E_{\parallel}

 Steady-state local electron momentum balance along the field line

Results The origin of E_{\parallel}

 Steady-state local electron momentum balance along the field line

$$eE_{\parallel} = - \nabla_{\parallel}T_{e\parallel} - T_{e\parallel}\nabla_{\parallel}\ln n + (T_{e\parallel} - T_{e\perp})\nabla_{\parallel}\ln B$$

$$\underbrace{\Phi_{\parallel T}}_{\Phi_{\parallel n}} = \underbrace{\Phi_{\parallel n}}_{\Phi_{\parallel n}} = \underbrace{\Phi_{\parallel B}}_{\Phi_{\parallel B}}$$

 Potential drop (incremental) across the outflow [Haggerty+2015, GRL]

$$e\Delta\Phi_{\parallel} = -\int_{b}^{a} E_{\parallel}dl \simeq \left(\frac{e\Delta\Phi_{\parallel T}}{10 \text{ eV}}\right) + \left(\frac{e\Delta\Phi_{\parallel n}}{160 \text{ eV}}\right) + \left(\frac{e\Delta\Phi_{\parallel B}}{50 \text{ eV}}\right)$$

Field-aligned ambipolar electric field is primarily due to electron density gradients

- $e\Phi_{\parallel}$ increases with $T_{e\infty}$ to keep electrons trapped.

- $e\Phi_{\parallel}$ increases with $T_{e\infty}$ to keep electrons trapped.

- $e\Phi_{\parallel}$ increases with $V_{Ae\infty}$ to balance the flux tube expansion

• $e\Phi_{\parallel}$ increases with $T_{e\infty}$ to keep electrons trapped.

- $e\Phi_{\parallel}$ increases with $V_{Ae\infty}$ to balance the flux tube expansion

 $e\Phi_{\parallel}$ increases with $T_{e\infty} {\rm and} \; V_{Ae\infty}$ to maintain quasi-neutrality

- The acceleration potential scales as $e \Phi_{\parallel}/T_{e\infty} = \alpha_{\Phi} \beta_{e\infty}^{-1/2}$

- The acceleration potential scales as $e \Phi_{\parallel}/T_{e\infty} = \alpha_{\Phi} \beta_{e\infty}^{-1/2}$
- Electron heating: $E_{rec} + E_{\parallel}$ [Le+2016, PoP, Øieroset+2020, ApJ]

$$\Delta T_e = \alpha_e m_i V_{Ai\infty}^2$$

- The acceleration potential scales as $e\Phi_{\parallel}/T_{e\infty} = \alpha_{\Phi}\beta_{e\infty}^{-1/2}$
- Electron heating: $E_{rec} + E_{\parallel}$ [Le+2016, PoP, Øieroset+2020, ApJ]

$$\Delta T_e = \alpha_e m_i V_{Ai\infty}^2$$

• Ion heating: Pick-up + E_{\parallel} [Drake+2009, JGR, Haggerty+2015, GRL]

$$\Delta T_i = \alpha_{i1} m_i V_{Ai\infty}^2 - 2\alpha_{i2} e \Phi_{\parallel}$$

- The acceleration potential scales as $e\Phi_{\parallel}/T_{e\infty} = \alpha_{\Phi}\beta_{e\infty}^{-1/2}$
- Electron heating: $E_{rec} + E_{\parallel}$ [Le+2016, PoP, Øieroset+2020, ApJ]

$$\Delta T_e = \alpha_e m_i V_{Ai\infty}^2$$

• Ion heating: Pick-up + E_{\parallel} [Drake+2009, JGR, Haggerty+2015, GRL]

$$\Delta T_i = \alpha_{i1} m_i V_{Ai\infty}^2 - 2\alpha_{i2} e \Phi_{\parallel}$$

Empirical model for the ion-to-electron energy partition

$$\frac{\Delta T_i}{\Delta T_e} = \frac{\alpha_{i1}}{\alpha_e} \left(1 - \frac{\alpha_{i2}\alpha_{\Phi}}{\alpha_{i1}} \sqrt{\beta_{e\infty}} \right)$$

• Fluid firehose stability condition $(p_{\parallel} - p_{\perp} < B^2/2\mu_0)$ for the entire CS requires [Le et al., 2009, 2010].

$$\left(\frac{e\Phi_{\parallel}}{T_{e\infty}}\right)_{max} \approx \frac{1}{2} \left[\left(\frac{4\tilde{n}}{\beta_{e\infty}}\right)^{1/4} - \frac{1}{2} \right]^2$$

 $(e\Phi_{\parallel})_{max}$ suggesting that parallel electric fields cannot produce too large electron pressure anisotropy.

Conclusions

- What is the nature of the parallel electric fields in magnetic reconnection? • The field-aligned ambipolar electric field is primarily due to electron density
- gradients.

- What is the role of the parallel electric fields in magnetic reconnection? The acceleration potential scales with inflow temperature and Alfvén speed
 - to maintain quasi-neutrality.

Conclusions

FEATURED IN PHYSICS EDITORS' SUGGESTION

Electron Heating by Parallel Electric Fields in Magnetotail Reconnection

Louis Richard, Yuri V. Khotyaintsev, Cecilia Norgren, Konrad Steinvall, Daniel B. Graham, Jan Egedal, Andris Vaivads, and Rumi Nakamura

Phys. Rev. Lett. 134, 215201 (2025) - Published 28 May, 2025

An analysis using unprecedented satellite observations reveals important information about how electrons get heated throughout the Universe.

Physics VIEWPOINT

Published 28 May, 2025

An analysis using unprecedented satellite observations reveals important information about how electrons get heated throughout the Universe.

See more in *Physics*

How Magnetic Reconnection Jolts Electrons

