Constraining turbulent solar flare acceleration regions by connecting multi-wavelength observations and kinetic modeling **Morgan Stores**

ICAR

2nd European Conference for Magnetic Reconnection in Plasmas

UNIVERSITY OF MINNESOTA

Northumbria Jniversity NEWCASTLE

The Solar Atmosphere

From Priest (2014)

2nd European Conference for Magnetic Reconnection in Plasmas

Solar Flares

Benz, A.O. (2002)

Large flare plasma properties:

- Coronal Temperature ~20 MK \bullet
- Coronal densities ~ 10^{10} cm⁻³ •
- Magnetic field strength: ~300G lacksquare

2nd European Conference for Magnetic Reconnection in Plasmas

Energy Spectrum

2nd European Conference for Magnetic Reconnection in Plasmas

MHD Turbulence

Krucker et al. (2008b)

2nd European Conference for Magnetic Reconnection in Plasmas

Different X-ray energy spectra in the coronal looptop and chromospheric footpoints - suggesting trapping.

Battaglia & Benz (2007)

MHD Plasma Turbulence

- MHD plasma turbulence can accelerate particles and cause heating over 10 MK
- During a flare, spectral lines often show line widths in excess of what is expected from random thermal motions alone

2nd European Conference for Magnetic Reconnection in Plasmas

Compare X-ray/EUV observations to simulation outputs to constrain the properties of a turbulent solar flare acceleration region.

Stores et al. (2021)

2nd European Conference for Magnetic Reconnection in Plasmas

Stores et al. (2023)

Kinetic Model

A time-independent Fokker-Planck equation is used to describe the evolution of an electron flux $F(E, z, \mu)$ [electrons cm⁻² s⁻¹ keV⁻¹], which is a function of field-aligned coordinate z [cm], energy E [keV] and cosine of the pitch-angle (β) to the guiding magnetic field $\mu = \cos \beta$.

$$\mu \frac{\partial F}{\partial z} = \sqrt{2m_e^3} \left\{ \frac{\partial}{\partial E} \left[E^{3/2} D(v, z) \frac{\partial}{\partial E} \left(\frac{F}{E} \right) \right] \right\} + \Gamma m_e^2 \left\{ \frac{\partial}{\partial E} \left[G(u[E]) \frac{\partial F}{\partial E} + \frac{G(u[E])}{E} \left(\frac{E}{k_B T} - 1 \right) \right] F \right\}$$
turbulent acceleration
$$+ \frac{\Gamma m_e^2}{8E^2} \left\{ \frac{\partial}{\partial \mu} \left[(1 - \mu^2) \left[\text{erf}(u[E]) - G(u[E]) \right] \frac{\partial F}{\partial \mu} \right] \right\} + \sqrt{\frac{m_e}{2E}} \left\{ \frac{\partial}{\partial \mu} \left[D_{\mu\mu}(\mu, z) \frac{\partial F}{\partial \mu} \right] \right\}$$
collisional pitch-angle scattering

$$\frac{\sqrt{2m_e^3} \left\{ \frac{\partial}{\partial E} \left[E^{3/2} D(v, z) \frac{\partial}{\partial E} \left(\frac{F}{E} \right) \right]}{\text{turbulent acceleration}} \right\} + \Gamma m_e^2 \left\{ \frac{\partial}{\partial E} \left[G(u[E]) \frac{\partial F}{\partial E} + \frac{G(u[E])}{E} \left(\frac{E}{k_B T} - 1 \right) \right] F \right)}{\text{collisional energy losses}} + \frac{\Gamma m_e^2}{8E^2} \left\{ \frac{\partial}{\partial \mu} \left[(1 - \mu^2) \left[\text{erf}(u[E]) - G(u[E]) \right] \frac{\partial F}{\partial \mu} \right] \right\}}{\text{collisional pitch-angle scattering}} + \frac{\sqrt{\frac{m_e}{2E}} \left\{ \frac{\partial}{\partial \mu} \left[D_{\mu\mu}(\mu, z) \frac{\partial F}{\partial \mu} \right] \right\}}{\text{turbulent scattering}} + \frac{\sqrt{\frac{m_e}{2E}} \left\{ \frac{\partial}{\partial \mu} \left[D_{\mu\mu}(\mu, z) \frac{\partial F}{\partial \mu} \right] \right\}}{\text{turbulent scattering}} + \frac{\sqrt{\frac{m_e}{2E}} \left\{ \frac{\partial}{\partial \mu} \left[D_{\mu\mu}(\mu, z) \frac{\partial F}{\partial \mu} \right] \right\}}{\text{turbulent scattering}}} + \frac{\sqrt{\frac{m_e}{2E}} \left\{ \frac{\partial}{\partial \mu} \left[D_{\mu\mu}(\mu, z) \frac{\partial F}{\partial \mu} \right] \right\}}{\text{turbulent scattering}}} + \frac{\sqrt{\frac{m_e}{2E}} \left\{ \frac{\partial}{\partial \mu} \left[D_{\mu\mu}(\mu, z) \frac{\partial F}{\partial \mu} \right] \right\}}{\text{turbulent scattering}}} + \frac{\sqrt{\frac{m_e}{2E}} \left\{ \frac{\partial}{\partial \mu} \left[D_{\mu\mu}(\mu, z) \frac{\partial F}{\partial \mu} \right] \right\}}{\text{turbulent scattering}}} + \frac{\sqrt{\frac{m_e}{2E}} \left\{ \frac{\partial}{\partial \mu} \left[D_{\mu\mu}(\mu, z) \frac{\partial F}{\partial \mu} \right] \right\}}{\text{turbulent scattering}}} + \frac{\sqrt{\frac{m_e}{2E}} \left\{ \frac{\partial}{\partial \mu} \left[D_{\mu\mu}(\mu, z) \frac{\partial F}{\partial \mu} \right] \right\}}{\text{turbulent scattering}}} + \frac{\sqrt{\frac{m_e}{2E}} \left\{ \frac{\partial}{\partial \mu} \left[D_{\mu\mu}(\mu, z) \frac{\partial F}{\partial \mu} \right] \right\}}{\text{turbulent scattering}}} + \frac{\sqrt{\frac{m_e}{2E}} \left\{ \frac{\partial}{\partial \mu} \left[D_{\mu\mu}(\mu, z) \frac{\partial F}{\partial \mu} \right] \right\}}{\text{turbulent scattering}}} + \frac{\sqrt{\frac{m_e}{2E}} \left\{ \frac{\partial}{\partial \mu} \left[D_{\mu\mu}(\mu, z) \frac{\partial F}{\partial \mu} \right] \right\}}{\text{turbulent scattering}} + \frac{\sqrt{\frac{m_e}{2E}} \left\{ \frac{\partial}{\partial \mu} \left[D_{\mu\mu}(\mu, z) \frac{\partial F}{\partial \mu} \right] \right\}}{\text{turbulent scattering}} + \frac{\sqrt{\frac{m_e}{2E}} \left\{ \frac{\partial}{\partial \mu} \left[D_{\mu\mu}(\mu, z) \frac{\partial F}{\partial \mu} \right] \right\}}{\text{turbulent scattering}} + \frac{\sqrt{\frac{m_e}{2E}} \left\{ \frac{\partial}{\partial \mu} \left[D_{\mu\mu}(\mu, z) \frac{\partial F}{\partial \mu} \right] \right\}}{\text{turbulent scattering}} + \frac{\sqrt{\frac{m_e}{2E}} \left\{ \frac{\partial}{\partial \mu} \left[D_{\mu\mu}(\mu, z) \frac{\partial F}{\partial \mu} \right] \right\}}{\text{turbulent scattering}} + \frac{\sqrt{\frac{m_e}{2E}} \left\{ \frac{\partial}{\partial \mu} \left[D_{\mu\mu}(\mu, z) \frac{\partial F}{\partial \mu} \right] \right\}}{\text{turbulent scattering}} + \frac{\sqrt{\frac{m_e}{2E}} \left\{ \frac{\partial}{\partial \mu} \left[D_{\mu\mu}(\mu, z) \frac{\partial F}{\partial \mu} \right] \right\}}{\text{turbulent scattering}} + \frac{\sqrt{\frac{m_e}{2E}} \left\{ \frac{\partial}{\partial \mu} \left[D_{\mu\mu}(\mu, z) \frac{\partial F}{\partial \mu} \right] \right\}} + \frac{\sqrt{\frac{m_e}{2E}} \left\{ \frac{\partial}{\partial \mu} \left[D_{\mu\mu}(\mu, z) \frac{\partial F}{\partial \mu} \right] \right\}}$$

2nd European Conference for Magnetic Reconnection in Plasmas

Stores et al. (2023)

Constraining turbulent acceleration regions

Acceleration diffusion coefficient - Stackhouse et al. (2018)

$$D(v, z) = \frac{v_{\text{th}}^2}{\tau_{\text{acc}}} \left(\frac{v}{v_{\text{th}}}\right)^{\alpha} \times H(z),$$

- $\tau_{acc} = \text{Acceleration timescale} \\ = A\tau_c$
 - $\alpha =$ Velocity Dependence

2nd European Conference for Magnetic Reconnection in Plasmas

H(z) = Spatial Function = exp $\left(-\frac{z^2}{2\sigma}\right)$

$\sigma =$ Spatial Extent

Constraining turbulent acceleration regions $D(v, z) = \frac{v_{\rm th}^2}{\tau_{\rm acc}}$

Control simulation

- Spatial Function: Gaussian
- Spatial extent: $\sigma = 3''$
- Velocity dependence: $\alpha = 3$

$$\tau_{acc} = [800, 10]$$

2nd European Conference for Magnetic Reconnection in Plasmas

$$\left(\frac{v}{v_{\rm th}}\right)^{\alpha} \times {\rm H}(z),$$

H(z) = Linear, Random $\sigma = 1'', 7''$ $\alpha = 2, 4$

 $00,2000,4000,6000]\tau_{c}$

Useful model outputs that can be directly compared to X-ray spectral and imaging diagnostics to constrain the acceleration region properties:

2nd European Conference for Magnetic Reconnection in Plasmas

Full flare spectral index

Spectral ratio $\delta_{nVF}^{LT} / \delta_{nVF}^{FP}$

Spectral differences $\delta_{nVF}^{LT} - \delta_{nVF}^{FP}$

Coronal source FWHM

Electron depth into chromosphere

$$\frac{nVF(LT)}{nVF(FP)} \qquad \eta = \frac{nVF(E = 6 - 12 \text{ keV})}{nVF(E = 50 - 100 \text{ keV})}$$

Coronal Source FWHM only changes with the **spatial extent** of the acceleration region.

2nd European Conference for Magnetic Reconnection in Plasmas

Spectral index

The spectral index is determined from the energy spectrum.

Spectral index changes with the acceleration timescale.

2nd European Conference for Magnetic Reconnection in Plasmas

Constraining turbulent acceleration regions

Acceleration diffusion coefficient - Stackhouse et al. (2018)

$$D(v, z) = \frac{v_{\text{th}}^2}{\tau_{\text{acc}}} \left(\frac{v}{v_{\text{th}}}\right)^{\alpha} \times H(z),$$

 τ_{acc} = Acceleration timescale $\alpha =$ Velocity Dependence

2nd European Conference for Magnetic Reconnection in Plasmas

H(z) = Spatial Function $\sigma =$ Spatial Extent

X-ray Observations

- Observed by RHESSI or SoIO/STIX
- Clear separation between coronal and chromospheric sources
- Found plasma properties and put values into model

2nd European Conference for Magnetic Reconnection in Plasmas

Constraining the spatial extent of the acceleration region

The spatial extent of the acceleration region can be determined from the coronal source FWHM - Stores (2023)

- X-ray imaging coronal source FWHM.
- Simulation change 2. spatial extent until coronal source FWHM matches observation.

$$\sigma \sim 25 \% L$$

2nd European Conference for Magnetic Reconnection in Plasmas

Constraining the acceleration timescale

The acceleration timescale can be determined from the spectral index. Stores (2023)

- X-ray spectroscopy spectral index.
- Simulation change 2. acceleration timescale until spectral index matches observation.

$$\tau_{acc} = 7$$
s, 22s, 18.4s

2nd European Conference for Magnetic Reconnection in Plasmas

Constraints from X-ray data alone $D(v, z) = \frac{v_{\text{th}}^2}{\tau_{\text{acc}}} \left(\frac{v}{v_{\text{th}}}\right)^{\alpha} \times H(z),$

H(z) = Spatial Function

$\sigma =$ Spatial Extent

The multiple simulations may produce outputs that match the X-ray observation

Fla

2nd European Conference for Magnetic Reconnection in Plasmas

τ_{acc} = Acceleration timescale α = Velocity Dependence

	Acceleration Region Properties				perties	Spectral and imaging diagnostics			
	H(z)	Ts	σ	α	$ au_{acc}$	FWHM	δ_{nVF}	γ_{FP}	η_{FP}^{Xray}
			[Mm]		[s]	[Mm]			
	l	No	5.4	3	8.7	14.5	1.9	4.0	11.6
ma 1	l	Yes	5.4	3	7.0	14.0	1.6	3.1	6.3
	r	No	5.4	3	7.8	14.7	1.8	-	48.5
ue i	r	Yes	5.4	3	9.1	13.9	1.7	2.9	5.4
	g	No	5.4	3	19.5	15.3	1.5	3.0	5.9
	g	Yes	5.4	3	18.2	14.1	2.0	2.9	5.8

Spatial distribution of Turbulence

- EUV Imaging Spectrometer (EIS) onboard Hinode
- HXR emission, rises and peaks at approximately 01:34:00 UT and 01:42:00 UT respectively.

Stores et al. (2021)

2nd European Conference for Magnetic Reconnection in Plasmas

Table 1 EIS spectral data

01:50 02:00

lon	λ(Å)	log T
Fe XXIV	255.1136	7.2
Fe XVI	262.9760	6.8
Fe XXIII	263.7657	7.2

5 EIS observation times

Gaussian Fitting

All studied lines with intensity $I(\lambda)$ are fitted with the following Gaussian function,

$$I(\lambda) = I_B + I_0 \exp(-\frac{(\lambda - \lambda_0)^2}{2\Delta\lambda^2})$$

- I_B Background intensity
- I₀ Peak intensity
- λ wavelength

- λ_0 measured centroid position
- $\Delta \lambda$ line broadening

Then to get the non-thermal velocity of the plasma motions:

$$FWHM = 2\sqrt{2In2}\Delta\lambda \qquad FWH$$

2nd European Conference for Magnetic Reconnection in Plasmas

$$\sqrt{4\ln^2\left(\frac{\lambda_0}{c}\right)^2\left(\frac{2k_BT_i}{m}+v_{\rm nth}^2\right)}+{\rm FWHM}_{\rm I}^2$$

2nd European Conference for Magnetic Reconnection in Plasmas

01:41:16 [UT]

01:46:37 [UT]

01:51:58 [UT]

Spatial Distribution of Turbulence

- At 01:51:58 UT, v_{nth} for Fe XXIV is ~20-25 kms⁻¹ lower than at 01:46:67 UT
- The decrease in v_{nth} is approximately linear

2nd European Conference for Magnetic Reconnection in Plasmas

Conclusion

the properties of flare-accelerated electrons and our determination of these properties.

2nd European Conference for Magnetic Reconnection in Plasmas

Using a combination of observations and modelling, we begin to determine how a spatially varying distribution of turbulence, in an extended acceleration region in the corona, determines

A large (X or M class) off limb flare observed by Hinode and RHESSI or Solar Orbiter/STIX?

