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Plasma Observatory

Science theme

- Unveiling plasma energization and energy transport in the Earth's
Magnetospheric System through muilti-scale observations.

- ESA M7 candidate in competitive Phase A. Final selection in June
2026. Launch 2037. M = medium = 750 million euro = 0.5 MMS

- Targets two ESA Voyage 2050 themes for ESA-led M Mission:

- Magnetospheric Systems

- Plasma Cross-scale Coupling

- ESA Science Study Team (SST): M.F. Marcucci (Lead), A. Retino
(coLead), T. Amano, Y. Khotyaintsev, C. Norgren, A. Simionescu, J.
Soucek, J.Stawarz, F. Valentini

- Large scientific community: 370+ researchers from 25 countries
(17 in Europe) including US, Japan and Chinao

- Payload team including 10+ ESA countries with key US and
Japanese contributions




Why Plasma Observatory? s

Solar corona.

Plasma is the main state of visible cosmic matter >oF .

) . . Radiation emitted
out fundamental plasma energization and energy by energized
transport processes are still not understood. These particles in a solar

flare. From Chen+,

orocesses are inherently driven by coupling of Science, 2015.
olasma scales.

Earth’s magnetospheric LB Tycho supernova remnant shock Solar corona. Radiation emitted by energized

system (Global Viasov. . C4sis S W Composite image. X-ray NASA/CSC/ particles in a solar flare. From Chen+, Science, 2015.
A1) - RIKEN&GSF C/T. Optical: DSS

simulation)

Strong plasma energization and
energy transport produced by
fundamental plasma processes!




‘nhe Earths Magnetosphneric system

Complex and highly dynamic with massive
energy transport and particle energization
occurring at boundaries and boundary layers
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Plasma Observatory vs. State-o
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SClence questions

Plasma energisation (\Voyage 2050 theme: Energy transport (\Voyage 2060 theme:

Plasma Cross-scale coupling) Magnetospheric Systems)

SQ1. How are particles energised in space SQ2. Which processes dominate energy transport and
plasmas? drive coupling between different regions of the Earth's

Magnetospheric System?

SQ1-1 At shocks?

SQ1-2 During magnetic reconnection? SQ2-1 How do plasma jets interact with the Earth's
SQ1-3 By waves and turbulent fluctuations? dipole field in the transition region?

SQ1-4 In plasma jets? SQ2-2 How do field-aligned currents connect different
SQ1-5 How do different processes combine to regions of the Magnetospheric System?

energise particles? SQ2-3 Which are the key plasma instabilities involved

N energy transport?
SQ2-4 How is energy flux partitioned in different
energy transport processes?

See also: ESA Voyage 2050 White Papers by A. Retino et al. and by J. Rae et al.
D. Verscharen, ..., A. Retino, A. Simionescu et al., The Plasma Universe: A Coherent Science Theme for Voyage 2050, Front. Astron. Space Sci., 2021
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Orbit (baseline). Equatorial HEO 8 x 17 RE with 15° inclination

Number of spacecraft. / identical smallsats.

Constellation. Two nested tetrahedra sharing one corner.

Mission nominal duration and phases. 3 Nominal Science /

Phases (NSPs) of 11 months duration.
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Unresolved guestions regarding muilti-

scale pnysics of magnetic reconnection

lon-electron coupling —

e.g. Hall dynamics inside

and outside of the
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Reconnection in turbulence

— What large-scale structures

(lboundary conditions) do

magnetic reconnection have
to adapt to

Energisation in dynamic anad
guasi-stationary structures —

olasma jets, islands/flux ropes,
magnetic bottles




Reconnection in turbulence

(IN a constrained environment)

Small-scale electron reconnection

- Magnetic reconnection could 4 MMS3  MMS 1
account for 20% of turbulent —
dissipation in the ]
magnetosheath (Stawarz et al.,
2022).

- What large-scale structures
(boundary conditions) do
magnetic reconnection have to
adapt to?

E\ectron—n\y reconnection
Phan et al.,, 2018
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PLASN4

lon-electron coupling and temporal gt
cvolution

Formation of reconnection jet
fronts in an open system
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PLASN4

lon-electron coupling and temporal gt
cvolution

Formation of reconnection jet
fronts in an open system
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avolution

lon-electron coupling and temporal

Formation of reconnection jet
fronts in an open system
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lon-electron coupling and temporal
evolution

Dipolarization Front Formation of reconnection jet
fronts in an open system
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~nergetic electron acc. at X-points

Energetic energisation is more common
during unsteady magnetotail reconnection
than steady magnetopause reconnection.

s steady reconnection efficient to
accelerate energetic electrons and which
are the acceleration mechanisms 7

MMS observations are essentially single

pOII’]t penergetlc ~ Ll,

Cluster could only access a single scale,
and often with insufficient time resolution

Simultaneous 7-point measurements at
ion and fluid scales required to resolve the
large-scale conditions of acceleration
while identitying the acceleration
mechanisms at small scales.
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Energetic electron acceleration during magnetopause
reconnection. Adapted from Fu et al., GRL, 2019
e Magnetosheath »e— Magnetosphere —

Outflow

Inflow /\ Inflow

Ee (keV)‘l
Astro implication: advance significatively in our
understanding of electron acceleration in reconnection

regions. Relevant for solar and stellar flares.



ectron energization at plasma jets
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Scientific organisation

PO thematic Working Groups to expand PO
specific and crucial themes:

* Numerical Simulations (A. Markku, D. Trotta)

* Multi-Point Data Analysis Methods
(G. Cozzani, A. Chasapis) e MO

Multi-Spacecraft Data
Gotz Paschmann and Patrick W. Daly (Eds.)

* Plasma Astrophysics (O. Pezzi, L. Comisso)

* Scientific synergies/Additional science
(S. Benella, J.-L. Ripoll)

* (Ground-based observations (SST Contact: J. Rae)

* Public Outreach (C. Forsyth)
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