Multi-Scale Turbulent Interactions between Tearing Modes and Microturbulence in Magnetically Confined Plasmas

Taweesak "Petch" Jitsuk^{1,2}

Collaborators

M.J. Pueschel, P.W. Terry, A. Di Siena, E. Poli, F. Widmer, J.S. Sarff, O. Sauter, M. Kong, M. Muraglia, ENR and TCV Teams

¹Dutch Institute for Fundamental Energy Research, Eindhoven, The Netherlands ²Department of Physics, University of Wisconsin-Madison, Madison WI, USA

Work supported by EUROfusion Consortium and US DOE June 17, 2025 Multi-scale turbulence: nonlinear coupling of fluctuations over a range of scales, such as

- ion \leftrightarrow electron gyroradius scales
- $\blacktriangleright \mathsf{MHD} \leftrightarrow \mathsf{ion} \mathsf{ gyroradius} \mathsf{ scales}$
- $\blacktriangleright \mathsf{MHD} \leftrightarrow \mathsf{electron} \mathsf{ gyroradius} \mathsf{ scales}$

Multi-scale interactions can influence

- saturation mechanisms
- driving gradients
- transport quantities

Consider multi-scale MHD \leftrightarrow ion-scale interactions in reversed-field pinches (RFPs) and tokamaks

RFPs are susceptible to tearing modes (TMs)

L. Marrelli et al., Nucl. Fusion 61, 023001 (2021)

RFP confinement improved in a current-controlled discharge

GENE implementation and benchmarking with ORB5

- Model dynamic global TMs and microturbulence \rightarrow global gyrokinetics
- ▶ Use GENE with shifted Maxwellian distribution → current-gradient drive
- Compare with ORB5 using zero pressure-gradient

T. Jitsuk et al., Nucl. Fusion 64, 046005 (2024)

Successful modeling of TMs in gyrokinetics

Linear TMs and microinstabilities in RFPs

Linear analyses of TMs of an RFP discharge

 $B_0 = 0.5 \,\mathrm{T}, \ m_\mathrm{i} = m_\mathrm{D}, \ \beta_\mathrm{e} = 0.7\%, \ n_0 = 0.7 \times 10^{19} \,\mathrm{m}^{-3}, T_0 = 0.6 \,\mathrm{keV}$

 \blacktriangleright Radial domain includes TMs and ∇P -driven microinstabilities

- Low k_y : slow-growing core TMs
- High k_y : fast-growing ∇n -TEM, close to edge

Nonlinear TM evolution

Core unstable modes excite smaller-scale stable modes close to edge

Diffusion of magnetic field lines due to nonlinear TMs

- Smaller-scale stable TMs get excited, form small islands near the edge
- Allows possible interactions with edge microturbulence

Microturbulence and saturation mechanism (no TMs)

- Nonlinear TEM saturation by nonlinearly-generated ZFs
- \blacktriangleright At experimental gradients, fluxes are suppressed \rightarrow Dimits regime

Field-line diffusivity

- ▶ Nonlinear TMs \rightarrow stochastic field lines \rightarrow field line diffusion
- Stochasticity near edge \rightarrow erosion of zonal flows

t.jitsuk@differ.nl

- ► Linear RFP TMs: self-consistently reproduced in global gyrokinetics
- Nonlinear TM saturation via mode coupling, smaller-scale stable TMs get excited
- Linear and nonlinear TEM simulations using shifted Maxwellian confirm earlier results of TEM in Dimits regime
- \blacktriangleright Self-consistent multi-scale simulations of global tearing, $\nabla n\text{-}\mathsf{TEM},$ and zonal flows
- Core-edge coupling excites edge stable TMs, affecting TEM-generated ZFs
- Multi-scale: ZFs get partially eroded. Heat flux increases
- Outlook: full-spectrum simulations, detailed analyses of triplet energy transfer

Take tokamak equilibrium profiles from TCV shot #59151

Plasma parameters

- $\beta_{\rm e} = 8\pi n_{\rm e} T_{\rm e} / B_0^2 = 0.0061$
- $\rho^* = \rho_s/a = 0.014$
- $\varepsilon_{\rm a} = a/R_0 = 0.317$, $R_0 = 0.88 \,{\rm m}$

•
$$m_{\rm e}/m_{\rm D} = 2.73 \times 10^{-4}$$

• $\nu_{\rm ei} = 0.074 \, c_{\rm s}/R_0$ with Landau coll. op.

•
$$Z_{\rm eff} = 1$$

•
$$J_{\parallel} = J_{\parallel e}$$

• $q_0(r_a = 0) > 1$

Linear spectrum

* n: toroidal mode number, $k_y = n q_{\rm s}/r_{\rm s}$ * negative $\omega:$ electron direction

- Without pressure gradients n = 1 4: collisionless TMs, $n \ge 5$: stable
- Without current gradients n = 1 4: MTMs, $n \ge 5$: ETGs
- With all gradients, n = 1shows signatures of both TM and MTM: hybrid TM-MTM, n = 2 - 4 are MTMs, and $n \ge 5$ low- k_y ETGs

 $\langle Q_{\rm e}^{\rm em} \rangle$: proxy of nonlinear tearing evolution (ETG=electrostatic)

- Well-developed TMs serve as initial cond. for multi-scale simulations
- Experimentally, $Z_{\rm eff} \sim 3 \Rightarrow \nu_{\rm ei} = 9 \times$
- $3 \times$ faster saturation at higher collisionality
- Dominated by 2/1 structure

Nonlinear TM-MTM only (with ∇P , n = 0 - 3)

• Nonlinear spectrum shows active n = 2, 3 MTM

• n=1 also contributes to electromagnetic heat flux $Q_{\rm e}^{\rm em}$

Flattening of $T_{\rm e}$ -profile

- TM-MTM \Rightarrow profile flattening \Rightarrow corrugation
- Flattening of $T_{\rm e} \rightarrow$ perturbed bootstrap current \rightarrow NTM \rightarrow higher $Q_{\rm e}^{\rm em}$
- Flattening of $T_{\rm e}$ \rightarrow affects ETG behavior
- Blue star: maximum drive of localized ETGs

t.jitsuk@differ.nl

Nonlinear ETG only (with $J_{\parallel} = 0$)

- Saturation: mode couplings to small scales
- Numerical elimination of ZFs $\to 10\%$ increases in $\langle Q_{\rm e}^{\rm es}\rangle$ and $\langle Q_{\rm i}^{\rm es}\rangle$

Nonlinear ETG only (with $J_{\parallel} = 0$)

- Localized $Q_{\rm e}^{\rm es}$ blobs driven by ETGs at $r \approx 0.56$, spreading down both sides of $T_{\rm e}$ peak \Rightarrow turbulence spreading
- No significant local/global profile flattening

- Multi-scale \rightarrow changes in flux levels
- Two possible factors: driving gradients and saturation mechanisms

Single-scale vs. Multi-scale Heat fluxes

- ETGs in multi-scale simulation removes the TM-induced corrugations \rightarrow steepening profiles \rightarrow reduces perturbed bootstrap current \rightarrow less contribution from nonlinear TMs and NTM
- $\bullet~\mathsf{Profile}~\mathsf{corrugation}~\to~\mathsf{reduces}~\mathsf{local}~\mathsf{average}~\mathsf{gradients}~\to~\mathsf{reduced}~\mathsf{ETGs}$

t.jitsuk@differ.nl

ETGs restore the flattened (corrugated) $T_{\rm e}$ profile

- ETGs (micro-scale modes) smooth driving gradients \Rightarrow reduces EM heat flux from tearing modes
- TM-MTM flatten profile \Rightarrow reduces ES heat flux from ETGs

- Linear simulations: TM, MTM and ETG
- Multi-scale fluxes are lower than those from single-scale simulations
- TM-MTM flatten $T_{\rm e}$ profile \rightarrow lower average temperature gradient driving ETGs \rightarrow lower $Q_{\rm e}^{\rm es}$
- ETGs steepen flattened $T_{\rm e} \to$ less bootstrap current \to reduced NTM activity \to lower $Q_{\rm e}^{\rm em}$
- Ongoing: multi-scale effects on saturation mechanisms, measurement of actual levels of bootstrap currents and NTMs

Acknowledgments

This work has been carried out within the framework of the EUROfusion Consortium, partially funded by the European Union via the Euratom Research and Training Program (Grant Agreement No. 101052200–EUROfusion). The views and opinions expressed are, however, those of the authors only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them.

