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Motivation:

Tearing modes in tokamaks reduce plasma confinement and lead to disruptions

Like fusion output, their severity generally increases with plasma pressure. 

Tokamak tearing research:
- find viable tearing-free pilot plant scenarios
- predict and prevent tearing onset in real time

How has machine learning (ML) have furthered these goals?
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Tearing modes (TMs) in tokamaks
have periodic modal structure

Simulated islands in DIII-D

Tearing modes:

- have m,n poloidal and toroidal Fourier mode numbers

- occur on rational surfaces where field lines close on 
themselves with helicity q = m/n

Reproduced from Sweeney NF 2018
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Tearing modes 
damage confinement

Simulated islands in DIII-D

Reproduced from Sweeney NF 2018

Particles adhere to field lines:

Nested flux surfaces  → particles well confined

Reconnection  →  island fields have finite radial width

→ fast radial transport and heat loss 
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Simulated islands in DIII-D Rotating island:
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Simulated islands in DIII-D Rotating island:

  → drag via 

 → mode locking, accelerated growth 

→ overlapping island chains ⇔ chaos ⇔ disruption

Leading cause of disruptions at JET[1]

18% of disruptions at DIIID due to TMs locking[2] 

Reproduced from Sweeney NF 2018
[1] de Vries et al., NF (2011)
[3] Sweeney et al. NF (2016)

Tearing-to-disruption
explained
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Tearing modes can identified 
with diagnostic coils

Rotating tearing mode 
→ time varying 3D field

→ diagnostic coils experience oscillating current

MIT’s Alcator C-Mod
 tokamak cross-section  
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Rotating tearing mode 
→ time varying 3D field

→ diagnostic coils experience oscillating current

Preprocessing step: fast fourier transform coil signals
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MIT’s Alcator C-Mod
 tokamak cross-section  Tearing modes can identified 

with diagnostic coils
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MIT’s Alcator C-Mod
 tokamak cross-section  Example of tearing mode 

labelling on Alcator C-Mod:

Step i: Filter signal noise

Preprocessing step: fast fourier transform coil signals
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MIT’s Alcator C-Mod
 tokamak cross-section  Example of tearing mode 

labelling on Alcator C-Mod:
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Step i: Filter signal noise
Step ii: Isolate cohesive signals

Preprocessing step: fast fourier transform coil signals
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MIT’s Alcator C-Mod
 tokamak cross-section  Example of tearing mode 

labelling on Alcator C-Mod:
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Step i: Filter signal noise
Step ii: Isolate cohesive signals

Preprocessing step: fast fourier transform coil signals

     

New wavelet-based tool 
to streamline this 
process: WavyStar1,2

1E d D Zapata-Cornejo et al 2024 PPCF 66 095016
2E d D Zapata-Cornejo. HAL Thesis, AMU, 2024. ⟨NNT : 2024AIXM0376⟩. ⟨tel-04904999⟩, under development at MIT-PSFC

https://www.theses.fr/2024AIXM0376
https://theses.hal.science/tel-04904999v1
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MIT’s Alcator C-Mod
 tokamak cross-section  Example of tearing mode 

labelling on Alcator C-Mod:
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Step i: Filter signal noise
Step ii: Isolate cohesive signals

Preprocessing step: fast fourier transform coil signals
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MIT’s Alcator C-Mod
 tokamak cross-section  Example of tearing mode 

labelling on Alcator C-Mod:
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Step i: Filter signal noise
Step ii: Isolate cohesive signals
Step iii: Identify toroidal mode n using phase differences

Preprocessing step: fast fourier transform coil signals
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MIT’s Alcator C-Mod
 tokamak cross-section  Example of tearing mode 

labelling on Alcator C-Mod:
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Step i: Filter signal noise
Step ii: Isolate cohesive signals
Step iii: Identify toroidal mode n using phase differences

Preprocessing step: fast fourier transform coil signals

     

n = 4

n = 3

n = 1 n = 2
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Tokamak tearing physics can motivate 
and contextualise an ML approach 

Predicting tearing stability is hard…
- for real time control, or scenario design

Why?

Tokamak tearing onset is moderated by multiple coupled, chaotic mechanisms 

The dynamics are sensitive to gradients of equilibrium quantities

What is the simplest model that explains this, and is consistent with experiment?
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1. Nonlinear tearing dynamics:
- modified Rutherford equation (MRE)

2. ‘Seeding’ and differential plasma rotation

3. Mode rotation as confounding variable

A minimal description of 
tokamak tearing physics:      
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A minimal description of 
tokamak tearing physics:      

1. Nonlinear tearing dynamics:
- modified Rutherford equation (MRE)

2. ‘Seeding’ and differential plasma rotation

3. Mode rotation as confounding variable
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TMs can be modelled 
with MRE:

[1] Hegna, PoP (1999)
[2] Schlutt & Hegna, PoP (2012)
[3] La Haye, PoP (2006)
[4] La Haye et al., NF (2022)

TMs can be modelled using the modified Rutherford equation (MRE) [1][2][3][4]: 

Predicts the dynamics of a single-helicity tearing mode after it has exceeded 
the characteristic resistive linear layer width
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TMs can be modelled using the modified Rutherford equation (MRE) [2][3][4][7]: 

Predicts the dynamics of a single-helicity tearing mode after it has exceeded 
the characteristic resistive linear layer width

General toroidal formulation: [2][3]

TMs can be modelled 
with MRE:

Dotted line = MRE* prediction 

TFTR, Chang et al., PRL (1995) 

inferred from 
magnetic signal
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Go through term-by-term

TMs can be modelled 
with MRE:

[1] Hegna, PoP (1999)
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Equilibrium ideal outer-region stability

TMs can be modelled 
with MRE:

[1] Hegna, PoP (1999)
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Equilibrium ideal outer-region stability

- Toroidal   [1,2]

- Finite-pressure, general toroidal geometry[3]

- Generally stabilising

TMs can be modelled 
with MRE:

[1] Pletzer, Bondeson & Dewar, JCP (1994), [2] Glasser et al. PoP (2016), [3] Hegna, PoP (1999)
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TMs can be modelled 
with MRE:

Local field-line curvature term[2,3]

- Generally stabilising

- Small

[2] Hegna, PoP (1999)
[3] Schlutt & Hegna, PoP (2012)
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Neoclassical term 
drives TM growth:

[4] La Haye, PoP (2006)
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Neoclassical drive                          dominates at island-widths seen during experiment: [4]

 

[4] La Haye, PoP (2006)
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Neoclassical term 
drives TM growth:

Neoclassical drive                          dominates at island-widths seen during experiment: [4]

   mag. island → no pressure gradient → lose local bootstrap current → drives reconnection 
 

[4] La Haye, PoP (2006)
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Neoclassical drive                          dominates at island-widths seen during experiment: [4]

   mag. island → no pressure gradient → lose local bootstrap current → drives reconnection 
 

[4] La Haye, PoP (2006)

TMs require a 
seed island:
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Neoclassical drive                          dominates at island-widths seen during experiment: [4]

   mag. island → no pressure gradient → lose local bootstrap current → drives reconnection 
 
   requires ‘seed’ island of width w~wd, otherwise cross-field (turbulent) transport maintains
   pressure gradient across island chain [5,6]

 

TMs require a 
seed island:

[4] La Haye, PoP (2006)
[5] Fitzpatrick, PoP (1995)
[6] Schlutt & Hegna, PoP (2012)
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A minimal description of 
tokamak tearing physics:      

1. Nonlinear tearing dynamics:
- modified Rutherford equation (MRE)

2. ‘Seeding’ and differential plasma rotation

3. Mode rotation as confounding variable

Sensitive to gradient of 
equilibrium quantities

eg. 
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A minimal description of 
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Sensitive to gradient of 
equilibrium quantities

eg. 
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What is island seeding:

Fast transient perturbed field (eg. ideal m,n = 1,1 ‘sawteeth’ instability)

→ short-lived 3D fields

→ forced reconnection at core rational surfaces

^Implicit time scale separation:
tearing modes  - slow reconnection
sawteeth ‘seed’  - fast reconnection
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TM seeding is moderated by 
differential rotation:
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Relative toroidal rotation 

between rational surfaces

TM seeding is moderated by 
differential rotation:

Bardóczi et al., PoP (2023)
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Relative toroidal rotation 

between rational surfaces

→ perturbed fields screened out

TM seeding is moderated by 
differential rotation:

Bardóczi et al., PoP (2023)
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Relative toroidal rotation 

between rational surfaces

→ perturbed fields screened out

 

TM seeding is moderated by 
differential rotation:

2/1 tearing onset vs differential rotation

Bardóczi et al., PoP (2023)
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Relative toroidal rotation 

between rational surfaces

→ perturbed fields screened out

 

TM seeding is moderated by 
differential rotation:

2/1 tearing onset vs differential rotation

Bardóczi et al., PoP (2023)

q = 1, 2 surfaces decoupled

 → no seeding from sawteeth
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A minimal description of 
tokamak tearing physics:      

1. Nonlinear tearing dynamics:
- modified Rutherford equation (MRE)

2. ‘Seeding’ and differential plasma rotation

3. Mode rotation as confounding variable

plasma rotation 
moderates seeding



45MIT Plasma Science & Fusion Center

A minimal description of 
tokamak tearing physics:      

1. Nonlinear tearing dynamics:
- modified Rutherford equation (MRE)

2. ‘Seeding’ and differential plasma rotation

3. Mode rotation as confounding variable

plasma rotation 
moderates seeding
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Ion polarisation current can strongly stabilise TMs at small island widths
- two-fluid effect

Relies on relative rotation between island chain and frame of zero radial field [1,2,3]
 

TM stability 
depends on 
mode-rotation
w.r.t plasma

[1] Waelbroeck et al., PRL (2001)
[2] Connor et al., PoP (2001)
[3] Waelbroeck., PRL (2005)
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Ion polarisation current can strongly stabilise TMs at small island widths
- two-fluid effect

Relies on relative rotation between island chain and frame of zero radial field [1,2,3]
 

TM stability 
depends on 
mode-rotation
w.r.t plasma

fast particle 
signal

toroidal rot. 
freq. (kHz)

La Haye et al., NF (2022)

Bn=1 (G)
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Ion polarisation current can strongly stabilise TMs at small island widths
- two-fluid effect

Relies on relative rotation between island chain and frame of zero radial field [1,2,3]
 

TM stability 
depends on 
mode-rotation
w.r.t plasma

[4] LaHaye, PoP (2006)
[16] Fitzpatrick, PoP (1995)La Haye et al., NF (2022)

ideal transients at plasma edge  

fast particle 
signal

toroidal rot. 
freq. (kHz)

Bn=1 (G)
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Ion polarisation current can strongly stabilise TMs at small island widths
- two-fluid effect

Relies on relative rotation between island chain and frame of zero radial field [1,2,3]
 

fast particle 
signal

toroidal rot. 
freq. (kHz)

La Haye et al., NF (2022)

TM stability 
depends on 
mode-rotation
w.r.t plasma

transients slow 2/1 mode rotation (in black) 

Bn=1 (G)
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Ion polarisation current can strongly stabilise TMs at small island widths
- two-fluid effect

Relies on relative rotation between island chain and frame of zero radial field [1,2,3]
 

fast particle 
signal

toroidal rot. 
freq. (kHz)

La Haye et al., NF (2022)

TM stability 
depends on 
mode-rotation
w.r.t plasma

no 2/1 mode rotation ⇔ robust growth 

Bn=1 (G)
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1. Nonlinear tearing dynamics:
- modified Rutherford equation (MRE)

2. ‘Seeding’ and differential plasma rotation

3. Mode rotation as confounding variable

A minimal description of 
tokamak tearing physics:      

onset is moderated by 
coupled, chaotic 
mechanisms
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1. Nonlinear tearing dynamics:
- modified Rutherford equation (MRE)

2. ‘Seeding’ and differential plasma rotation

3. Mode rotation as confounding variable

Coupled, multi-scale physics prohibits direct simulation

A minimal description of 
tokamak tearing physics:      

onset is moderated by 
coupled, chaotic 
mechanisms
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1. Nonlinear tearing dynamics:
- modified Rutherford equation (MRE)

2. ‘Seeding’ and differential plasma rotation

3. Mode rotation as confounding variable

Coupled, multi-scale physics prohibits direct simulation
→ experimental data captures the whole picture  

A minimal description of 
tokamak tearing physics:      

onset is moderated by 
coupled, chaotic 
mechanisms
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1. Nonlinear tearing dynamics:
- modified Rutherford equation (MRE)

2. ‘Seeding’ and differential plasma rotation

3. Mode rotation as confounding variable

Coupled, multi-scale physics prohibits direct simulation
→ experimental data captures the whole picture

Chaotic dynamics motivates a statistical/ML approach

A minimal description of 
tokamak tearing physics:      

onset is moderated by 
coupled, chaotic 
mechanisms
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Statistical analyses of TM onset confirm that 
plasma state dictates stability, despite chaotic seeding events

[1] Bardóczi et al., PoP (2023)
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Bardóczi et al. 2023[1] - what plasma variables have the most influence on TM onset?

Using 14260 shots on the DIII-D tokamak:

Calculated dependence of 2/1 TM onset probability on various plasma parameters:

[1] Bardóczi et al., PoP (2023)
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Statistical analyses of TM onset confirm that 
plasma state dictates stability, despite chaotic seeding events

Bardóczi et al. 2023[1] - what plasma variables have the most influence on TM onset?

Using 14260 shots on the DIII-D tokamak:

Calculated dependence of 2/1 TM onset probability on various plasma parameters:

Ranked param. 
importance
by variation
in probability
minus error

[1] Bardóczi et al., PoP (2023)
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Bardóczi et al. 2023[1] - what plasma variables have the most influence on TM onset?
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Calculated dependence of 2/1 TM onset probability on various plasma parameters:

Confirmed a hierarchy of terms consistent with MRE + seeding physics model

[1] Bardóczi et al., PoP (2023)
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Bardóczi et al. 2023[1] - what plasma variables have the most influence on TM onset?

Using 14260 shots on the DIII-D tokamak:

Calculated dependence of 2/1 TM onset probability on various plasma parameters:

Confirmed a hierarchy of terms consistent with MRE + seeding physics model

Most important terms:
1. Plasma beta ⇔ bootstrap drive

[1] Bardóczi et al., PoP (2023)
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Statistical analyses of TM onset confirm that 
plasma state dictates stability, despite chaotic seeding events

Bardóczi et al. 2023[1] - what plasma variables have the most influence on TM onset?

Using 14260 shots on the DIII-D tokamak:

Calculated dependence of 2/1 TM onset probability on various plasma parameters:

Confirmed a hierarchy of terms consistent with MRE + seeding physics model

Most important terms:
1. Plasma beta ⇔ bootstrap drive
2. n = 2 magnetic signal ⇔ seeding from 3/2 modes

[1] Bardóczi et al., PoP (2023)
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Statistical analyses of TM onset confirm that 
plasma state dictates stability, despite chaotic seeding events

Bardóczi et al. 2023[1] - what plasma variables have the most influence on TM onset?

Using 14260 shots on the DIII-D tokamak:

Calculated dependence of 2/1 TM onset probability on various plasma parameters:

Confirmed a hierarchy of terms consistent with MRE + seeding physics model

Most important terms:
1. Plasma beta ⇔ bootstrap drive
2. n = 2 magnetic signal ⇔ seeding from 3/2 modes
3. q = 1, 2 differential rotation ⇔ moderates seeding from 1/1 modes

[1] Bardóczi et al., PoP (2023)
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Statistical analyses of TM onset confirm that 
plasma state dictates stability, despite chaotic seeding events

Bardóczi et al. 2023[1] - what plasma variables have the most influence on TM onset?

Using 14260 shots on the DIII-D tokamak:

Calculated dependence of 2/1 TM onset probability on various plasma parameters:

Confirmed a hierarchy of terms consistent with MRE + seeding physics model

Most important terms:
1. Plasma beta ⇔ bootstrap drive
2. n = 2 magnetic signal ⇔ seeding from 3/2 modes
3. q = 1, 2 differential rotation ⇔ moderates seeding from 1/1 modes

What about chaos?
[1] Bardóczi et al., PoP (2023)
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Statistical analyses of TM onset confirm that 
plasma state dictates stability, despite chaotic seeding events

Bardóczi et al. 2023[1] - what plasma variables have the most influence on TM onset?

What about chaos?
[1] Bardóczi et al., PoP (2023), [2] Bardóczi et al., NF (2023)
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Statistical analyses of TM onset confirm that 
plasma state dictates stability, despite chaotic seeding events

Bardóczi et al. 2023[1] - what plasma variables have the most influence on TM onset?
Bardóczi et al. 2023[2] - TM onset times can be consistent w. random process 

What about chaos?
[1] Bardóczi et al., PoP (2023), [2] Bardóczi et al., NF (2023)
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Statistical analyses of TM onset confirm that 
plasma state dictates stability, despite chaotic seeding events

Bardóczi et al. 2023[1] - what plasma variables have the most influence on TM onset?
Bardóczi et al. 2023[2] - TM onset times can be consistent w. random process 

[1] Bardóczi et al., PoP (2023), [2] Bardóczi et al., NF (2023)
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Statistical analyses of TM onset confirm that 
plasma state dictates stability, despite chaotic seeding events

Bardóczi et al. 2023[1] - what plasma variables have the most influence on TM onset?
Bardóczi et al. 2023[2] - TM onset times can be consistent w. random process 

[1] Bardóczi et al., PoP (2023), [2] Bardóczi et al., NF (2023)

2/1 onset consistent with 
time-independent random process
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Statistical analyses of TM onset confirm that 
plasma state dictates stability, despite chaotic seeding events

Bardóczi et al. 2023[1] - what plasma variables have the most influence on TM onset?
Bardóczi et al. 2023[2] - TM onset times can be consistent w. random process 

[1] Bardóczi et al., PoP (2023), [2] Bardóczi et al., NF (2023)

2/1 onset consistent with 
time-independent random process

  Depends on scenario!
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Bardóczi et al. 2023[1] 
Bardóczi et al. 2023[2] 

Statistical analyses of TM onset confirm that 
plasma state dictates stability, despite the chaotic nature of seeding 

[1] Bardóczi et al., PoP (2023), [2] Bardóczi et al., NF (2023)
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Review of ML-driven tearing studies 

- Statistical analyses of TM onset

- Onset prediction with ML

- TM control with ML

- Using ML to interpret tearing data
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Machine learning can be used to warn of impending tearing modes
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List of relevant publications:
Buttery et al. NF (2004)
Fu et al. PoP (2020)
Olofsson et al. JPP (2022)
Bardóczi et al. PoP (2023)

    Seo et al. IJCNN (2023)
   Farre-Kaga et al. ArXiv (2025)

  

Machine learning can be used to warn of impending tearing modes
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List of relevant publications:
Buttery et al. NF (2004)   
Fu et al. PoP (2020)

→ Olofsson et al. JPP (2022)
Bardóczi et al. PoP (2023)

    Seo et al. IJCNN (2023)
→ Farre-Kaga et al. ArXiv (2025)

  

Machine learning can be used to warn of impending tearing modes
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Farre-Kaga et al. 2025 
Olofsson et al. 2022 

Machine learning can be used to warn of impending tearing modes
by applying survival analysis methods

 

Survival analysis

- statistical framework for Pr ( event | time )

- time series data as inputs
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Farre-Kaga et al. 2025 
Olofsson et al. 2022 

Machine learning can be used to warn of impending tearing modes
by applying survival analysis methods

 

Survival analysis

- statistical framework for Pr ( event | time )

- time series data as inputs

- various algorithms compared for disruption onset[1]

[1] Keith et al., J.Fus.En. (2024)
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Farre-Kaga et al. 2025 
Olofsson et al. 2022 

Machine learning can be used to warn of impending tearing modes
by applying survival analysis methods

 

Survival analysis

- statistical framework for Pr ( event | time )

- time series data as inputs

- various algorithms compared for disruption onset[1]

- Deep Survival Machine ++

[1] Keith et al., J.Fus.En. (2024), [2] Nagpal et al., ArXiv (2021) 
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Farre-Kaga et al. 2025 - Predicting tearing onset with a Deep Survival Machine[1,2]

Olofsson et al. 2022 

[1] Keith et al., J.Fus.En. (2024), [2] Nagpal et al., ArXiv (2021), [3] Shousha et al., NF (2023), [4] Farre-Kaga et al. ArXiv (2025) 

Machine learning can be used to warn of impending tearing modes
by applying survival analysis methods
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Farre-Kaga et al. 2025 - Predicting tearing onset with a Deep Survival Machine[1,2]

Olofsson et al. 2022 

→ input: 

kinetic DIII-D equilibria rapidly 

reconstructed with ML[3] 

- rotation, density, temperature

 

[1] Keith et al., J.Fus.En. (2024), [2] Nagpal et al., ArXiv (2021), [3] Shousha et al., NF (2023), [4] Farre-Kaga et al. ArXiv (2025) 

Machine learning can be used to warn of impending tearing modes
by applying survival analysis methods
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Farre-Kaga et al. 2025 - Predicting tearing onset with a Deep Survival Machine[1,2]

Olofsson et al. 2022 

→ input: 

kinetic DIII-D equilibria rapidly 

reconstructed with ML[3] 

- rotation, density, temperature

 

[1] Keith et al., J.Fus.En. (2024), [2] Nagpal et al., ArXiv (2021), [3] Shousha et al., NF (2023), [4] Farre-Kaga et al. ArXiv (2025) 

Machine learning can be used to warn of impending tearing modes
by applying survival analysis methods

 

Prediction Performance
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Farre-Kaga et al. 2025 - Predicting tearing onset with a Deep Survival Machine[1,2]

Olofsson et al. 2022 

→ input: 

kinetic DIII-D equilibria rapidly 

reconstructed with ML[3] 

- rotation, density, temperature

→ captured 90% of TMs with false alarm rate    

     of 20% @ 900ms avg. warning time[4]

 
[1] Keith et al., J.Fus.En. (2024), [2] Nagpal et al., ArXiv (2021), [3] Shousha et al., NF (2023), [4] Farre-Kaga et al. ArXiv (2025) 

Machine learning can be used to warn of impending tearing modes
by applying survival analysis methods

 

Prediction Performance
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Farre-Kaga et al. 2025 - Predicting tearing onset with a Deep Survival Machine
Olofsson et al. 2022 - Tearing onset can be predicted from equilibrium data alone

  

Trained using 18 026 DIII-D shots

Inputs:
- Ideal MHD mag. energy distribution

- applied principal component analysis 
to reduce dimensionality

- no rotation, temperature, density etc.

mention
hazard
function?

Machine learning can be used to warn of impending tearing modes
by applying survival analysis methods
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Farre-Kaga et al. 2025 - Predicting tearing onset with a Deep Survival Machine
Olofsson et al. 2022 - Tearing onset can be predicted from equilibrium data alone

  

Trained using 18 026 DIII-D shots

Inputs:
- Ideal MHD mag. energy distribution

- applied principal component analysis 
to reduce dimensionality

- no rotation, temperature, density etc.

Magnetic energy principal components 

Machine learning can be used to warn of impending tearing modes
by applying survival analysis methods
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Farre-Kaga et al. 2025 - Predicting tearing onset with a Deep Survival Machine
Olofsson et al. 2022 - Tearing onset can be predicted from equilibrium data alone

  

Successful TM prediction:
Trained using 18 026 DIII-D shots

Inputs:
- Ideal MHD mag. energy distribution

- applied principal component analysis 
to reduce dimensionality

- no rotation, temperature, density etc. on
se

t r
at

e 
(re

l. 
to
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el
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e)

Machine learning can be used to warn of impending tearing modes
by applying survival analysis methods
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Buttery et al. 2004   
Fu et al. 2020
Olofsson et al. 2022
Bardóczi et al. 2023

    Seo et al. 2023
   Farre-Kaga et al. 2025

Machine learning can be used to predict TM onset 
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Review of ML-driven tearing studies 

- Statistical analyses of TM onset

- Onset prediction with ML

- TM control with ML

- Using ML to interpret tearing data
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Machine learning can be used to create plasma 
control strategies that avoid tearing onset 
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Machine learning can be used to create plasma 
control strategies that avoid tearing onset 

Fu et al. 
2020[1]

Seo et al. 
2024[2]

Rothstein, 
Farre-Kaga et al. 

2025[3]

  

[1] Fu et al., PoP (2020) [2] Seo et al., Nature (2024), [3] Rothstein, Farre-Kaga et al., in prep (2025)
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Machine learning can be used to create plasma 
control strategies that avoid tearing onset 

Fu et al. Tearability-actuated beam heating for tearing avoidance
2020[1]

Seo et al. 
2024[2]

Rothstein, 
Farre-Kaga et al. 

2025[3]

  

[1] Fu et al., PoP (2020) [2] Seo et al., Nature (2024), [3] Rothstein, Farre-Kaga et al., in prep (2025)
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Machine learning can be used to create plasma 
control strategies that avoid tearing onset 

Fu et al. Tearability-actuated beam heating for tearing avoidance
2020[1]

Seo et al. ML multi-actuator control to maximise      while avoiding TMs
2024[2]

Rothstein, 
Farre-Kaga et al. 

2025[3]

  

[1] Fu et al., PoP (2020) [2] Seo et al., Nature (2024), [3] Rothstein, Farre-Kaga et al., in prep (2025)
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Machine learning can be used to create plasma 
control strategies that avoid tearing onset 

Fu et al. Tearability-actuated beam heating for tearing avoidance
2020[1]

Seo et al. ML multi-actuator control to maximise      while avoiding TMs 
2024[2]

Rothstein, Tearability-actuated electron cyclotron current drive 
Farre-Kaga et al. to maximise current drive efficiency while avoiding TMs

2025[3]

  

[1] Fu et al., PoP (2020) [2] Seo et al., Nature (2024), [3] Rothstein, Farre-Kaga et al., in prep (2025)
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Machine learning can be used to create plasma 
control strategies that avoid tearing onset 

Fu et al. Tearability-actuated beam heating for tearing avoidance
2020[1]

Seo et al. ML multi-actuator control to maximise      while avoiding TMs 
2024[2]

Rothstein, Tearability-actuated electron cyclotron current drive 
Farre-Kaga et al. to maximise current drive efficiency while avoiding TMs

2025[2]

  

[1] Fu et al., PoP (2020) [2] Seo et al., Nature (2024), [3] Rothstein, Farre-Kaga et al., in prep (2025)
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Fu et al. Tearability-actuated beam heating for tearing avoidance
2020[1]

Seo et al. Multi-actuator control to maximise      while avoiding TMs 
2024[3]

Rothstein, Tearability-actuated electron cyclotron current drive 
Farre-Kaga et al. to maximise current drive efficiency while avoiding TMs

2025[2]

  

Machine learning can be used to create plasma 
control strategies that avoid tearing onset 
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Machine learning can be used to create plasma 
control strategies that avoid tearing onset 

Fu et al. Tearability-actuated beam heating for tearing avoidance
2020[1]

Seo et al. Multi-actuator control to maximise      while avoiding TMs 
2024[3]

Rothstein, Tearability-actuated electron cyclotron current drive 
Farre-Kaga et al. to maximise current drive efficiency while avoiding TMs

2025[2]

  

[1] Fu et al., PoP (2020) [2] Seo et al., Nature (2024), [3] 
Rothstein, Farre-Kaga et al., in prep (2025)
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Machine learning can be used to create plasma 
control strategies that avoid tearing onset 

Fu et al. Tearability-actuated neutral beams for tearing avoidance
2020[1]

Seo et al. Multi-actuator control to maximise      while avoiding TMs 
2024[3] - uses reinforcement learning

Rothstein, Tearability-actuated electron cyclotron current drive 
Farre-Kaga et al. response to maximise current drive efficiency while avoiding 

2025[2] TMs

  

[1] Fu et al., PoP (2020) [2] Rothstein, Farre-Kaga et al., in prep (2025), [3] Seo et al., Nature (2024) 
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Fu et al. 2020
Seo et al. 2024
Rothstein et al. 2025

ML can be used to control the plasma to avoid TM onset

Proof of concept → completed
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Fu et al. 2020
Seo et al. 2024
Rothstein et al. 2025

ML can be used to control the plasma to avoid TM onset

Proof of concept → completed

Next step: Stress-testing ML control algorithms for pilot-plant applications 
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Review of ML-driven tearing studies 

- Statistical analyses of TM onset

- Onset prediction with ML

- TM control with ML

- Using ML to interpret tearing data
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Bardóczi et al. 2023[1] - what plasma variables have the most influence on TM onset?

- trained ML-based tearing onset predictor w. time-series of 0D plasma parameters

Machine learning can identify physics correlations in
multi-dimensional parameter spaces

[1] Bardóczi et al., PoP (2023)
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Bardóczi et al. 2023[1] - what plasma variables have the most influence on TM onset?

- trained ML-based tearing onset predictor w. time-series of 0D plasma parameters

Ranking impact on TM onset:
→ how much prediction 

accuracy fell upon removal

  

Machine learning can identify physics correlations in
multi-dimensional parameter spaces

[1] Bardóczi et al., PoP (2023)
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Bardóczi et al. 2023[1] - what plasma variables have the most influence on TM onset?

- trained ML-based tearing onset predictor w. time-series of 0D plasma parameters

Ranking impact on TM onset:
→ how much prediction 

accuracy fell upon removal

Corroborated ordering from 
empirical probability variance   

Machine learning can identify physics correlations in
multi-dimensional parameter spaces

[1] Bardóczi et al., PoP (2023)
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Bardóczi et al. 2023[1] - what plasma variables have the most influence on TM onset?

- trained ML-based tearing onset predictor w. time-series of 0D plasma parameters

Ranking impact on TM onset:
→ how much prediction 

accuracy fell upon removal

Corroborated ordering from 
empirical probability variance   

Machine learning can identify physics correlations in
multi-dimensional parameter spaces

variable #ML impact #

Plasma beta 1 1

[1] Bardóczi et al., PoP (2023)

Physics-determinants of 2/1 onset 
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Bardóczi et al. 2023[1] - what plasma variables have the most influence on TM onset?

- trained ML-based tearing onset predictor w. time-series of 0D plasma parameters

Ranking impact on TM onset:
→ how much prediction 

accuracy fell upon removal

Corroborated ordering from 
empirical probability variance   

Machine learning can identify physics correlations in
multi-dimensional parameter spaces

variable #ML impact #

Plasma beta 1 1

Bootstrap current 2 11

[1] Bardóczi et al., PoP (2023)

Physics-determinants of 2/1 onset 
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Bardóczi et al. 2023[1] - what plasma variables have the most influence on TM onset?

- trained ML-based tearing onset predictor w. time-series of 0D plasma parameters

Ranking impact on TM onset:
→ how much prediction 

accuracy fell upon removal

Corroborated ordering from 
empirical probability variance   

Machine learning can identify physics correlations in
multi-dimensional parameter spaces

variable #ML impact #

Plasma beta 1 1

Bootstrap current 2 11

n = 2 mag. signal 3 4

q = 1, 2 differential 
rotation

4 3

[1] Bardóczi et al., PoP (2023)

Physics-determinants of 2/1 onset 
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Bardóczi et al. 2023[1] - what plasma variables have the most influence on TM onset?

Farre-Kaga et al. 2025[2]   

Olofsson et al. 2025[3]

Benjamin et al. 2025[4]   

Machine learning can identify physics correlations in
multi-dimensional parameter spaces

[1] Bardóczi et al., PoP (2023), [2] Farre-Kaga et al., arXiv:2502.20294v1 (2025) [3] Olofsson et al., NF (2025), [4] Manuscript in prep. 

Shapley analysis:
Allows physics-based interpretation of logic
encoded in ML algorithms

^see our poster
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Background

- Tearing-to-disruption 

- Identifying tearing modes

- Tearing physics to motivate machine learning

Review of ML-driven tearing studies 

Summary and future directions
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Summarising the impact of ML on tearing research in tokamaks

Tokamak tearing physics involves coupled, multi-scale dynamics, & chaos

- this motivates a data-driven approach w. statistics and ML 

ML has been able to:
1. identify stability trends
2. predict tearing onset 
3. control the plasma to avoid tearing modes in real time (proof of concept)
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Demonstrated capabilities use diagnostics & actuators 
that may not be present on tokamak power plants 

Tokamak tearing physics involves coupled, multi-scale dynamics, & chaos

- this motivates a data-driven approach w. statistics and ML 

ML has been able to:
1. identify stability trends
2. predict tearing onset 
3. control the plasma to avoid tearing modes in real time (proof of concept)

sensitive to diagnostic suit[1]  

rapid & effective actuators:
- neutral beams
- electron cyclotron current drive

[1] Olofsson et al., NF (2025)
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Tokamak tearing physics involves coupled, multi-scale dynamics, & chaos
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Fusion neutrons, plant economics
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- neutral beams
- electron cyclotron current drive

Demonstrated capabilities use diagnostics & actuators 
that may not be present on tokamak power plants 
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Tokamak tearing physics involves coupled, multi-scale dynamics, & chaos

- this motivates a data-driven approach w. statistics and ML 

ML has been able to:
1. identify stability trends
2. predict tearing onset 
3. control the plasma to avoid tearing modes in real time (proof of concept)

Fusion neutrons, plant economics
 → limit diagnostic suite

High field, high density, plant economics
 → limit plasma actuators

sensitive to diagnostic suit  

rapid & effective actuators:
- neutral beams
- electron cyclotron current drive

?

Demonstrated capabilities use diagnostics & actuators 
that may not be present on tokamak power plants 
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Tokamak tearing physics involves coupled, multi-scale dynamics, & chaos

- this motivates a data-driven approach w. statistics and ML 

ML has been able to:
1. identify stability trends
2. predict tearing onset 
3. control the plasma to avoid tearing modes in real time (proof of concept)

Fusion neutrons, plant economics
 → limit diagnostic suite

High field, high density, plant economics
 → limit plasma actuators

sensitive to diagnostic suit  

rapid & effective actuators:
- neutral beams
- electron cyclotron current drive

?

Demonstrated capabilities use diagnostics & actuators 
that may not be present on tokamak power plants 

SOLUTION?
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Let’s find the intersection* of tearing-stable scenarios and fusion pilot-plants

Method:
- Apply ML to a community-driven, multi-machine tearing mode database 

We propose an increased focus on tearing-free scenarios 
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Let’s find the intersection* of tearing-stable scenarios and fusion pilot-plants

Method:
- Apply ML to a community-driven, multi-machine tearing mode database 

We propose an increased focus on tearing-free scenarios 

Interested in stabilising fully-inductive scenarios? Come see:

‘Macroscopic trends of linear and neoclassical tearing 
stability in high-field H-mode tokamak pilot plants’

Work supported by Commonwealth Fusion Systems and 
U.S. Department of Energy FES under Award DE-SC0014264.
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BACKUP SLIDES
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Shapley analysis allows physics-based 
interpretation of the logic encoded in ML tearing predictors 

 

[1] Farre-Kaga et al., arXiv:2502.20294v1 (2025)
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Shapley analysis allows physics-based 
interpretation of the logic encoded in ML tearing predictors 

[1] Farre-Kaga et al., arXiv:2502.20294v1 (2025)

Farre-Kaga et al. 2025[1]  - ML confirms temperature gradients destabilise TMs



119MIT Plasma Science & Fusion Center

Farre-Kaga et al. 2025[1]  - ML confirms temperature gradients destabilise TMs

Tearability predictor for 2/1 mode onset trained on 6050 DIII-D shots

Shapley analysis allows physics-based 
interpretation of the logic encoded in ML tearing predictors 

[1] Farre-Kaga et al., arXiv:2502.20294v1 (2025)
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Farre-Kaga et al. 2025[1]  - ML confirms temperature gradients destabilise TMs

Tearability predictor for 2/1 mode onset trained on 6050 DIII-D shots

[1] Farre-Kaga et al., arXiv:2502.20294v1 (2025)

Shapley analysis allows physics-based 
interpretation of the logic encoded in ML tearing predictors 
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Farre-Kaga et al. 2025[1]  - ML confirms temperature gradients destabilise TMs

Tearability predictor for 2/1 mode onset trained on 6050 DIII-D shots

[1] Farre-Kaga et al., arXiv:2502.20294v1 (2025)

Shapley analysis allows physics-based 
interpretation of the logic encoded in ML tearing predictors 

Shapley analysis:
Correlates input values to Tearability predictions,
shifted by mean Tearability
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Shapley analysis allows physics-based 
interpretation of the logic encoded in ML tearing predictors 

 

Farre-Kaga et al. 2025[1]  - ML confirms temperature gradients destabilise TMs
Benjamin et al. 2025[2]    - 𝚫’ is well constrained by MRE curvature stabilisation term

[1] Farre-Kaga et al., arXiv:2502.20294v1 (2025) [2] Manuscript in prep.
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Shapley analysis allows physics-based 
interpretation of the logic encoded in ML tearing predictors 

 

Farre-Kaga et al. 2025[1]  - ML confirms temperature gradients destabilise TMs
Benjamin et al. 2025[2]    - 𝚫’ is well constrained by MRE curvature stabilisation term

Monte-Carlo generated 14667 tokamak inductive pilot-plant equilibria 

Calculated toroidal 𝚫’ values using resistive DCON[3]

Trained an ML 𝚫’ predictor using local tearing physics terms 

[1] Farre-Kaga et al., arXiv:2502.20294v1 (2025) [2] Manuscript in prep. [3] Glasser et al. PoP (2016)
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Shapley analysis allows physics-based 
interpretation of the logic encoded in ML tearing predictors 

 

Farre-Kaga et al. 2025[1]  - ML confirms temperature gradients destabilise TMs
Benjamin et al. 2025[2]    - 𝚫’ is well constrained by MRE curvature stabilisation term

[1] Farre-Kaga et al., arXiv:2502.20294v1 (2025) [2] Manuscript in prep.

Two most important terms for 𝚫’ prediction



125MIT Plasma Science & Fusion Center

Farre-Kaga et al. 2025[1]  

Benjamin et al. 2025[2]    

Olofsson et al. 2025[3]

Shapley analysis allows physics-based interpretation of the logic 
encoded in ML tearing predictors  

[1] Farre-Kaga et al., arXiv:2502.20294v1 (2025) [2] Manuscript in prep. [3] Olofsson et al., NF (2025)
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MIT’s Alcator C-Mod
 tokamak cross-section  
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Identifying tearing poloidal and 
toroidal mode number - m,n
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MIT’s Alcator C-Mod
 tokamak cross-section  
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Identifying tearing poloidal and 
toroidal mode number - m,n

i. pick a point in frequency/time space 
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MIT’s Alcator C-Mod
 tokamak cross-section  
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Identifying tearing poloidal and 
toroidal mode number - m,n

i. pick a point in frequency/time space 
ii. compute phase differences across all probes
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MIT’s Alcator C-Mod
 tokamak cross-section  

time [ms] 

fre
qu

en
cy

 [k
H

z]
 

Identifying tearing poloidal and 
toroidal mode number - m,n

i. pick a point in frequency/time space 
ii. compute phase differences across all probes 
ii. compare with expected phase differences for 
    set m, n modes
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Buttery et al. 2004: Predicting time-to-disruption w. a neural network
 

Neural network (NN):
Layers of nonlinear activation functions that combine and 
transform inputs parameters into an output that minimises 
prediction error
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Buttery et al. 2004: Predicting time-to-disruption w. a neural network
 

Neural network (NN):
- Inputs are passed through `layers’ of nonlinear activation functions 

that combine and transform them
- Produces an output that minimises prediction error
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Buttery et al. 2004: Predicting time-to-disruption w. a neural network
 

output = time to TM onset 
  at set time intervals

error = Σ (predicted - actual time to onset)2

Neural network (NN):
Layers of nonlinear activation functions that combine and 
transform inputs parameters into an output that minimises 
prediction error
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Buttery et al. 2004: Predicting time-to-disruption w. a neural network
 

output = time to TM onset 
  at set time intervals

error = Σ (predicted - actual time to onset)2
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Buttery et al. 2004: Predicting time-to-disruption w. a neural network
 

output = time to TM onset 
  at set time intervals

error = Σ (predicted - actual time to onset)2
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Buttery et al. 2004: Sawtooth period,      are important for prediction
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Buttery et al. 2004: Shorter sawtooth period → higher       limit   
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Tearing hazard function: Average TM onset frequency as a function of plasma state

Converted into a simple optimisation problem 

Trained using a boosted tree model:

Tree:
- subdivides input space into rectangular regions 
- makes prediction based on average of training data in each region

Boosted tree:
Iteratively constructs trees and sums their predictions

Oloffson et al. 2018: Tearing hazard function
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Oloffson et al. 2018: Tearing hazard function used to understand 
   physics behind 2/1 TM onset at DIII-D

Finding average TM onset frequency as a function of DIII-D tearing physics terms 
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Oloffson et al. 2018: Tearing hazard function used to understand 
   physics behind 2/1 TM onset at DIII-D

go
od
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ss
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f fi

t

Finding average TM onset frequency as a function of DIII-D tearing physics terms 

Iterative feature selection:
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Oloffson et al. 2018: Tearing hazard function used to understand 
   physics behind 2/1 TM onset at DIII-D

Finding average TM onset frequency as a function of DIII-D tearing physics terms 

Iterative feature selection:



142MIT Plasma Science & Fusion Center

Oloffson et al. 2018: Tearing hazard function used to understand 
   physics behind 2/1 TM onset at DIII-D

Finding average TM onset frequency as a function of DIII-D tearing physics terms 

Three most important terms:
1. flow shear
2. poloidal beta
3. MRE bootstrap current term
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Oloffson et al. 2018: Tearing hazard function used to understand 
   physics behind 2/1 TM onset at DIII-D

Finding average TM onset frequency as a function of DIII-D tearing physics terms 

Three most important terms:
1. flow shear
2. poloidal beta
3. MRE bootstrap current term

Delta-prime proxy not important:
- ‘equilibrium’ value doesn’t vary significantly/not dominant term?
- high-m formulation not appropriate?
- obscured by error?
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Oloffson et al. 2018: Low or reversed flow shear is extremely destabilising
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Machine learning can be used to warn of impending TM onset
 

Fu et al. 2020  - How to construct a tearing onset predictor

  



146MIT Plasma Science & Fusion Center

Machine learning can be used to warn of impending TM onset
 

Fu et al. 2020  - How to construct a tearing onset predictor

Time series of training inputs 
supplied to a ML fitting algorithm 
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Machine learning can be used to warn of impending TM onset
 

Fu et al. 2020  - How to construct a tearing onset predictor

Time series of training inputs 
supplied to a ML fitting algorithm 

Define output ‘Tearability’∈ [0,1]
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Machine learning can be used to warn of impending TM onset
 

Fu et al. 2020  - How to construct a tearing onset predictor

Time series of training inputs 
supplied to a ML fitting algorithm 

Define output ‘Tearability’∈ [0,1]

Trained on 1970 shots on DIII-D
w. 0D physics quantities
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Machine learning can be used to warn of impending TM onset
 

Fu et al. 2020  - How to construct a tearing onset predictor

Time series of training inputs 
supplied to a ML fitting algorithm 

Define output ‘Tearability’∈ [0,1]

Trained on 1970 shots on DIII-D
w. 0D physics quantities

Able to correctly detect 90% of TMs
with a false alarm rate of 8% 

> 400ms avg. warning time

  



150MIT Plasma Science & Fusion Center

Seo et al. 2024: ML can be used to 
actuate multiple plasma controllers to 
maximise plasma pressure while 
avoiding tearing modes

Applies deep reinforcement learning:

Neural network-based plasma controller trained to maximise reward R based on its actions: 

k = threshold
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Requires dynamical model for plasma response given an action…

Seo et al. 2024: ML can be used to 
actuate multiple plasma controllers to 
maximise plasma pressure while 
avoiding tearing modes

Applies deep reinforcement learning:

Neural network-based plasma controller trained to maximise reward R based on its actions: 
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Requires dynamical model for plasma response given an action…

Dynamical model: Seo at al., (2023)

Seo et al. 2024: ML can be used to 
actuate multiple plasma controllers to 
maximise plasma pressure while 
avoiding tearing modes

Applies deep reinforcement learning:

Neural network-based plasma controller trained to maximise reward R based on its actions: 

k = threshold
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Seo et al. 2024: ML can be used to 
actuate multiple plasma controllers to 
maximise plasma pressure while 
avoiding tearing modes

Applies deep reinforcement learning:

Neural network-based plasma controller trained to maximise reward R based on its actions: 

Requires dynamical model for plasma response given an action…

Dynamical model: Seo at al., (2023)

Time series data fed to neural network
Predicts Tearability ∈ [0,1] &       at time t + 25ms 

Inputs:
- current diagnostic information 
- future actuator response  
- 8505 DIII-D shots, 639 555 time slices

k = threshold
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Seo et al. 2024: ML can be 
used to actuate multiple 
plasma controllers to 
maximise plasma pressure 
while avoiding tearing 
modes


